File size: 9,451 Bytes
1be89f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import json
from pathlib import Path
from typing import Any
import click
import numpy as np
import optuna
import polars as pl
import scipy.sparse as sp
import torch
from implicit.gpu.als import AlternatingLeastSquares
from implicit.gpu.bpr import BayesianPersonalizedRanking
from yambda.constants import Constants
from yambda.evaluation.metrics import calc_metrics
from yambda.evaluation.ranking import Embeddings, Targets, rank_items
from yambda.processing import timesplit
from yambda.utils import mean_dicts
@click.command()
@click.option(
'--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
)
@click.option(
'--size',
required=True,
type=click.Choice(['50m', '500m', "5b"]),
default=["50m"],
multiple=True,
show_default=True,
)
@click.option(
'--interaction',
required=True,
type=click.Choice(['likes', 'listens']),
default=["likes"],
multiple=True,
show_default=True,
)
@click.option(
"--model",
required=True,
type=click.Choice(['als', 'bpr']),
multiple=False,
show_default=True,
)
@click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True)
@click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
@click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
def main(
data_dir: str,
size: list[str],
interaction: list[str],
model: str,
validation_metric: str,
report_metrics: list[str],
device: str,
):
print(f"REPORT METRICS: {report_metrics}")
for s in size:
for i in interaction:
print(f"SIZE {s}, INTERACTION {i}")
result = bpr_als(
data_dir, s, i, device, model, validation_metric=validation_metric, report_metrics=report_metrics
)
print(json.dumps(result, indent=2))
def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
path: Path = Path(path) / dataset_size / dataset_name
df = pl.scan_parquet(path.with_suffix(".parquet"))
return df
def preprocess(
df: pl.LazyFrame, interaction: str, val_size: int
) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
if interaction == "listens":
df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD).select(
"uid", "item_id", "timestamp"
)
train, val, test = timesplit.flat_split_train_val_test(
df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
)
return (
train,
val.collect(engine="streaming").lazy() if val is not None else None,
test.collect(engine="streaming").lazy(),
)
def process_train_data(df: pl.LazyFrame) -> tuple[pl.LazyFrame, list[int], list[int]]:
unique_pairs = df.select("uid", "item_id").unique()
unique_uids = df.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_list()
unique_item_ids = df.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_list()
return unique_pairs, unique_uids, unique_item_ids
def build_csr_matrix(pairs: pl.LazyFrame, unique_uids: list[int], unique_item_ids: list[int]) -> sp.csr_matrix:
uid_to_idx = {uid: i for i, uid in enumerate(unique_uids)}
item_id_to_idx = {item_id: i for i, item_id in enumerate(unique_item_ids)}
pairs = pairs.select(
pl.col("uid").replace_strict(uid_to_idx, return_dtype=pl.UInt32),
pl.col("item_id").replace_strict(item_id_to_idx, return_dtype=pl.UInt32),
).collect(engine="streaming")
rows, cols = pairs["uid"].to_numpy(), pairs["item_id"].to_numpy()
values = np.ones_like(rows, dtype=np.int32)
return sp.coo_matrix(
(values, (rows, cols)), dtype=np.float32, shape=(len(unique_uids), len(unique_item_ids))
).tocsr()
def train_embbedings_with_als(
user_item_interactions: sp.csr_matrix,
regularization: float = 0.01,
iterations: int = 100,
random_state: int = 42,
factors: int = 64,
) -> tuple[np.ndarray, np.ndarray]:
als = AlternatingLeastSquares(
factors=factors,
regularization=regularization,
iterations=iterations,
random_state=random_state,
calculate_training_loss=False,
)
als.fit(user_item_interactions, show_progress=False)
return als.user_factors.to_numpy(), als.item_factors.to_numpy()
def train_embbedings_with_bpr(
user_item_interactions: sp.csr_matrix,
learning_rate: float = 0.01,
regularization: float = 0.01,
iterations: int = 100,
random_state: int = 42,
factors: int = 64,
) -> tuple[np.ndarray, np.ndarray]:
bpr = BayesianPersonalizedRanking(
factors=factors,
learning_rate=learning_rate,
regularization=regularization,
iterations=iterations,
random_state=random_state,
verify_negative_samples=True,
)
bpr.fit(user_item_interactions, show_progress=False)
return bpr.user_factors.to_numpy(), bpr.item_factors.to_numpy()
def calc_embeddings_metrics(
user_emb: np.ndarray,
item_emb: np.ndarray,
uid_tensor: torch.Tensor,
item_id_tensor: torch.Tensor,
targets: Targets,
metrics: list[str],
device: str,
) -> dict[str, dict[int, float]]:
num_ranked_items = max([int(x.split("@")[1]) for x in metrics])
user_emb = Embeddings(uid_tensor, torch.from_numpy(user_emb).to(device))
item_emb = Embeddings(item_id_tensor, torch.from_numpy(item_emb).to(device))
ranked_items = rank_items(user_emb, item_emb, num_ranked_items)
return calc_metrics(ranked_items, targets, metrics)
def hyperopt(
train: pl.LazyFrame,
val: pl.LazyFrame,
n_trials: int,
model: str,
validation_metric: str,
device: str,
) -> dict[str, float | int]:
pairs, unique_uids, unique_item_ids = process_train_data(train)
user_item_interactions = build_csr_matrix(pairs, unique_uids, unique_item_ids)
targets = Targets.from_sequential(val.group_by("uid").agg("item_id").collect(engine="streaming"), device)
def objective(trial: optuna.Trial) -> float:
iterations = trial.suggest_int(name="iterations", low=10, high=300, log=True)
regularization = trial.suggest_float(name="regularization", low=1e-5, high=1, log=True)
if model == "als":
user_emb, item_emb = train_embbedings_with_als(user_item_interactions, regularization, iterations)
else:
learning_rate = trial.suggest_float(name="learning_rate", low=1e-5, high=0.1, log=True)
user_emb, item_emb = train_embbedings_with_bpr(
user_item_interactions, learning_rate, regularization, iterations
)
metrics = calc_embeddings_metrics(
user_emb,
item_emb,
torch.tensor(unique_uids, device=device),
torch.tensor(unique_item_ids, device=device),
targets,
[validation_metric],
device,
)
t, k = validation_metric.split('@')
return metrics[t][int(k)]
optuna.logging.set_verbosity(optuna.logging.WARNING)
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=n_trials)
return study.best_params
def evaluation(
train: pl.LazyFrame,
test: pl.LazyFrame,
model: str,
hp: dict[str, Any],
random_seeds: list[int],
report_metrics: list[str],
device: str,
) -> dict[str, dict[int, float]]:
train, unique_uids, unique_item_ids = process_train_data(train)
user_item_interactions = build_csr_matrix(train, unique_uids, unique_item_ids)
targets = Targets.from_sequential(
test.group_by("uid").agg("item_id").collect(engine="streaming"),
device,
)
metrics_list = []
for seed in random_seeds:
if model == "als":
user_emb, item_emb = train_embbedings_with_als(
user_item_interactions, hp["regularization"], hp["iterations"], seed
)
else:
user_emb, item_emb = train_embbedings_with_bpr(
user_item_interactions, hp["learning_rate"], hp["regularization"], hp["iterations"], seed
)
metrics = calc_embeddings_metrics(
user_emb,
item_emb,
torch.tensor(unique_uids, device=device),
torch.tensor(unique_item_ids, device=device),
targets,
report_metrics,
device,
)
metrics_list.append(metrics)
return mean_dicts(metrics_list)
def bpr_als(
data_dir: str,
size: str,
interaction: str,
device: str,
model: str,
validation_metric: str,
report_metrics: list[str],
n_trials: dict[str, int] = {"50m": 10, "500m": 2, "5b": 2},
):
df = scan(data_dir, size, interaction)
# hyperopt by validation
train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE)
hp = hyperopt(train, val, n_trials[size], model, validation_metric, device)
print("Best HP:")
print(json.dumps(hp, indent=2))
# final model
train, _, test = preprocess(df, interaction, val_size=0)
return evaluation(
train,
test,
model,
hp,
random_seeds=[41, 42, 43],
report_metrics=report_metrics,
device=device,
)
if __name__ == "__main__":
main()
|