Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,056 Bytes
1be89f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gc
import json
from pathlib import Path
from typing import Any

import click
import polars as pl
import torch

from yambda.constants import Constants
from yambda.evaluation.metrics import calc_metrics
from yambda.evaluation.ranking import Embeddings, Targets, rank_items
from yambda.processing import timesplit
from yambda.utils import argmax


DEFAULT_GRIDS = {
    "50m": {
        "likes": [0, 0.001, 0.25, 0.5, 1, 2, 3, 4, 6],
        "listens": [0, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0, 2],
    },
    "500m": {
        "likes": [0, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0],
        "listens": [0, 0.001, 0.002, 0.004, 0.008],
    },
}


@click.command()
@click.option(
    '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
)
@click.option(
    '--size',
    required=True,
    type=click.Choice(['50m', '500m']),  # 5b is not supported
    default="50m",
    multiple=False,
    show_default=True,
    help="5b is not supported due to (num_user, num_user) matrix",
)
@click.option(
    '--interaction',
    required=True,
    type=click.Choice(['likes', 'listens']),
    default="likes",
    multiple=False,
    show_default=True,
)
@click.option(
    '--hours',
    required=True,
    type=float,
    default=[-1],
    multiple=True,
    show_default=True,
    help="Hyperparameter. If -1 default grid will be used",
)
@click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True)
@click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
@click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
def main(
    data_dir: str,
    size: str,
    interaction: str,
    hours: list[float],
    validation_metric: str,
    report_metrics: list[str],
    device: str,
):
    print(f"REPORT METRICS: {report_metrics}")
    print(f"SIZE {size}, INTERACTION {interaction}")
    result = item_knn(
        data_dir,
        size,
        interaction,
        device,
        hours=hours if hours[0] != -1 else DEFAULT_GRIDS[size][interaction],
        validation_metric=validation_metric,
        report_metrics=report_metrics,
    )
    print(json.dumps(result, indent=2))


def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
    path = Path(path) / dataset_size / dataset_name
    df = pl.scan_parquet(path.with_suffix(".parquet"))
    return df


def preprocess(
    df: pl.LazyFrame, interaction: str, val_size: int
) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
    if interaction == "listens":
        df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD)

    train, val, test = timesplit.flat_split_train_val_test(
        df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
    )

    return (
        train,
        val.collect(engine="streaming").lazy() if val is not None else None,
        test.collect(engine="streaming").lazy(),
    )


def eliminate_zeros(x: torch.Tensor, threshold: float = 1e-9) -> torch.Tensor:
    mask = (x._values() > threshold).nonzero()
    nv = x._values().index_select(0, mask.view(-1))
    ni = x._indices().index_select(1, mask.view(-1))
    return torch.sparse_coo_tensor(ni, nv, x.shape)


def create_weighted_sparse_tensor(train: pl.LazyFrame, tau: float) -> torch.Tensor:
    uid_mapping = (
        train.select("uid").unique().with_columns(pl.col("uid").rank(method="dense").alias("uid_idx") - 1).collect()
    )

    item_mapping = (
        train.select("item_id")
        .unique()
        .with_columns(pl.col("item_id").rank(method="dense").alias("item_idx") - 1)
        .collect()
    )

    processed = (
        train.with_columns(pl.max("timestamp").over("uid").alias("max_timestamp"))
        .with_columns((pl.col("max_timestamp") - pl.col("timestamp")).alias("delta"))
        .with_columns((tau ** pl.col("delta")).alias("weight"))
        .join(uid_mapping.lazy(), on="uid", how="inner")
        .join(item_mapping.lazy(), on="item_id", how="inner")
    )

    coo_data = processed.group_by(["uid_idx", "item_idx"]).agg(pl.sum("weight").alias("total_weight")).collect()

    indices = torch.concat([coo_data["uid_idx"].to_torch()[None, :], coo_data["item_idx"].to_torch()[None, :]], dim=0)
    values = torch.tensor(coo_data["total_weight"].to_numpy(), dtype=torch.float)

    return eliminate_zeros(
        torch.sparse_coo_tensor(
            indices=indices, values=values, size=(uid_mapping["uid_idx"].max() + 1, item_mapping["item_idx"].max() + 1)
        )
    )


def sparse_normalize(sparse_tensor: torch.Tensor, dim=0, eps=1e-12):
    indices = sparse_tensor.coalesce().indices()
    values = sparse_tensor.coalesce().values()

    unique_dim_indices, inverse = torch.unique(indices[dim], return_inverse=True)
    squared_values = values**2
    sum_squared = torch.zeros_like(unique_dim_indices, dtype=torch.float32)
    sum_squared.scatter_add_(0, inverse, squared_values)

    norms = torch.sqrt(sum_squared + eps)
    normalized_values = values / norms[inverse]

    return torch.sparse_coo_tensor(indices, normalized_values, sparse_tensor.size())


def training(
    train: pl.LazyFrame, hour: float, user_item: torch.Tensor, user_ids: torch.Tensor, device: str, decay: float = 0.9
) -> Embeddings:
    tau = 0.0 if hour == 0 else decay ** (1 / 24 / 60 / 60 / (hour / 24))

    user_item_with_tau = create_weighted_sparse_tensor(train, tau)
    user_embeddings = (user_item_with_tau @ user_item.T).to_dense()
    user_embeddings = torch.nn.functional.normalize(user_embeddings, dim=-1)

    return Embeddings(user_ids, user_embeddings.to(device))


def evaluation(
    train: pl.LazyFrame, val: pl.LazyFrame, device: str, hours: list[float], metrics: list[str]
) -> list[dict[str, Any]]:
    num_ranked_items = max([int(x.split("@")[1]) for x in metrics])

    unique_user_ids = train.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_torch().to(device)
    unique_item_ids = (
        train.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_torch().to(device)
    )

    user_item = create_weighted_sparse_tensor(train, 1.0)
    item_embeddings = sparse_normalize(user_item.T.to(device), dim=-1)
    item_embeddings = Embeddings(unique_item_ids, item_embeddings)

    targets = Targets.from_sequential(
        val.group_by('uid', maintain_order=True).agg(pl.all().exclude('uid')).select(['uid', 'item_id']),
        device,
    )

    hour2metrics = []
    for hour in hours:
        user_embeddings = training(
            train=train,
            hour=hour,
            user_item=user_item,
            user_ids=unique_user_ids,
            device=device,
        )

        ranked = rank_items(
            users=user_embeddings,
            items=item_embeddings,
            num_items=num_ranked_items,
            batch_size=128,
        )

        del user_embeddings
        gc.collect()

        hour2metrics.append(calc_metrics(ranked, targets, metrics))

    del unique_user_ids
    del unique_item_ids
    del item_embeddings
    del targets
    gc.collect()

    return hour2metrics


def item_knn(
    data_dir: str,
    size: str,
    interaction: str,
    device: str,
    hours: list[float],
    validation_metric: str,
    report_metrics: list[str],
) -> dict[str, Any]:
    df = scan(data_dir, size, interaction)

    # hyperopt by validation
    train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE)

    results = evaluation(train, val, device, hours, [validation_metric])

    metric_name, k = validation_metric.split('@')

    best_hour = hours[argmax(results, lambda x: x[metric_name][int(k)])]

    print(f"FINAL HYPERPARAMS {best_hour=}")

    # train final model
    train, _, test = preprocess(df, interaction, val_size=0)

    return evaluation(train, test, device, [best_hour], report_metrics)[0]


if __name__ == "__main__":
    main()