Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,807 Bytes
1be89f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import logging
from dataclasses import dataclass, field
from functools import cached_property
from typing import Dict, List

import numpy as np
import polars as pl
import torch

from yambda.constants import Constants
from yambda.processing import timesplit


logger = logging.getLogger(__name__)


@dataclass
class Data:
    train: pl.LazyFrame
    validation: pl.LazyFrame | None
    test: pl.LazyFrame
    item_id_to_idx: dict[int, int]

    _train_user_ids: torch.Tensor | None = field(init=False, default=None)

    @property
    def num_items(self):
        return len(self.item_id_to_idx)

    @cached_property
    def num_train_users(self):
        return self.train.select(pl.len()).collect(engine="streaming").item()

    def train_user_ids(self, device):
        if self._train_user_ids is None or self._train_user_ids.device != device:
            self._train_user_ids = self.train.select('uid').collect(engine="streaming")['uid'].to_torch().to(device)
        return self._train_user_ids


def preprocess(df: pl.LazyFrame, interaction: str, val_size=Constants.VAL_SIZE, max_seq_len: int = 200) -> Data:
    """
    Preprocesses raw interaction data for recommendation system modeling.

    Args:
        df (pl.LazyFrame): Raw input data containing user interaction sequences
        interaction (str): Type of interaction to process. Must be either 'likes' or 'listens'.
        val_size (float): Proportion of data to use for validation (default: from Constants)

    Returns:
        Data: Named tuple containing:
            - train (pl.LazyFrame): Training data
            - val (pl.LazyFrame): Validation data
            - test (pl.LazyFrame): Test data
            - item_id_to_idx (dict): Mapping from original item IDs to model indices

    Note:
        - For 'listens' interactions, uses strict engagement threshold
        - Item indices start at 1 to reserve 0 for padding/masking
    """
    if interaction == 'listens':
        df = df.select(
            'uid',
            pl.col('item_id', 'timestamp').list.gather(
                pl.col('played_ratio_pct').list.eval(pl.arg_where(pl.element() >= Constants.TRACK_LISTEN_THRESHOLD))
            ),
        ).filter(pl.col('item_id').list.len() > 0)

    unique_item_ids = (
        df.select(pl.col("item_id").explode().unique().sort()).collect(engine="streaming")["item_id"].to_list()
    )

    item_id_to_idx = {int(item_id): i + 1 for i, item_id in enumerate(unique_item_ids)}

    train, val, test = timesplit.sequential_split_train_val_test(
        df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP, drop_non_train_items=False
    )

    def replace_strict(df):
        return (
            df.select(
                pl.col("item_id").list.eval(pl.element().replace_strict(item_id_to_idx)),
                pl.all().exclude("item_id"),
            )
            .collect(engine="streaming")
            .lazy()
        )

    # polars requires too much memory for replace strict if list is too big
    train = train.select('uid', pl.all().exclude('uid').list.slice(-max_seq_len, max_seq_len))
    train = replace_strict(train)

    if val is not None:
        val = replace_strict(val)

    test = replace_strict(test)

    return Data(train, val, test, item_id_to_idx)


class TrainDataset:
    def __init__(self, dataset: pl.DataFrame, num_items: int, max_seq_len: int):
        self._dataset = dataset
        self._num_items = num_items
        self._max_seq_len = max_seq_len

    @property
    def dataset(self) -> pl.DataFrame:
        return self._dataset

    def __len__(self) -> int:
        return len(self._dataset)

    def __getitem__(self, index: int) -> Dict[str, List[int] | int]:
        sample = self._dataset.row(index, named=True)

        item_sequence = sample['item_id'][:-1][-self._max_seq_len :]
        positive_sequence = sample['item_id'][1:][-self._max_seq_len :]
        negative_sequence = np.random.randint(1, self._num_items + 1, size=(len(item_sequence),)).tolist()

        return {
            'user.ids': [sample['uid']],
            'user.length': 1,
            'item.ids': item_sequence,
            'item.length': len(item_sequence),
            'positive.ids': positive_sequence,
            'positive.length': len(positive_sequence),
            'negative.ids': negative_sequence,
            'negative.length': len(negative_sequence),
        }


class EvalDataset:
    def __init__(self, dataset: pl.DataFrame, max_seq_len: int):
        self._dataset = dataset
        self._max_seq_len = max_seq_len

    @property
    def dataset(self) -> pl.DataFrame:
        return self._dataset

    def __len__(self) -> int:
        return len(self._dataset)

    def __getitem__(self, index: int) -> Dict[str, List[int] | int]:
        sample = self._dataset.row(index, named=True)

        item_sequence = sample['item_id_train'][-self._max_seq_len :]
        next_items = sample['item_id_valid']

        return {
            'user.ids': [sample['uid']],
            'user.length': 1,
            'item.ids': item_sequence,
            'item.length': len(item_sequence),
            'labels.ids': next_items,
            'labels.length': len(next_items),
        }


def collate_fn(batch: List[Dict]) -> Dict[str, torch.Tensor]:
    """
    Collates a batch of samples into batched tensors suitable for model input.

    This function processes a list of dictionaries, each containing keys like '{prefix}.ids'
    and '{prefix}.length' (the length of the sequence for that prefix). For each such prefix, it:
        - Concatenates all '{prefix}.ids' lists from the batch into a single flat list.
        - Collects all '{prefix}.length' values into a list.
        - Converts the resulting lists into torch.LongTensor objects.

    Args:
        batch (List[Dict]): List of sample dictionaries. Each sample must contain keys of the form
            '{prefix}.ids' (list of ints) and '{prefix}.length' (int).

    Returns:
        Dict[str, torch.Tensor]: Dictionary with keys '{prefix}.ids' and '{prefix}.length' for each prefix,
            where values are 1D torch.LongTensor objects suitable for model input.
    """
    processed_batch = {}
    for key in batch[0].keys():
        if key.endswith('.ids'):
            prefix = key.split('.')[0]
            assert '{}.length'.format(prefix) in batch[0]

            processed_batch[f'{prefix}.ids'] = []
            processed_batch[f'{prefix}.length'] = []

            for sample in batch:
                processed_batch[f'{prefix}.ids'].extend(sample[f'{prefix}.ids'])
                processed_batch[f'{prefix}.length'].append(sample[f'{prefix}.length'])

    for part, values in processed_batch.items():
        processed_batch[part] = torch.tensor(values, dtype=torch.long)

    return processed_batch