Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,231 Bytes
1be89f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import logging
import pathlib as Path
import random

import click
import numpy as np
import polars as pl
import torch
from model import SASRecEncoder
from torch.utils.data import DataLoader

from data import Data, EvalDataset, collate_fn, preprocess
from yambda.evaluation.metrics import calc_metrics
from yambda.evaluation.ranking import Embeddings, Targets, rank_items


logging.basicConfig(
    level=logging.DEBUG, format='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)


def infer_users(eval_dataloader: DataLoader, model: torch.nn.Module, device: str):
    user_ids = []
    user_embeddings = []

    model.eval()
    for batch in eval_dataloader:
        for key in batch.keys():
            batch[key] = batch[key].to(device)

        user_ids.append(batch['user.ids'])  # (batch_size)
        user_embeddings.append(model(batch))  # (batch_size, embedding_dim)

    return torch.cat(user_ids, dim=0), torch.cat(user_embeddings, dim=0)


def infer_items(model: SASRecEncoder):
    return model.item_embeddings.weight.data


@click.command()
@click.option('--exp_name', required=True, type=str)
@click.option('--data_dir', required=True, type=str, default='../../data/', show_default=True)
@click.option(
    '--size',
    required=True,
    type=click.Choice(['50m', '500m', '5b']),
    default='50m',
    show_default=True,
)
@click.option(
    '--interaction',
    required=True,
    type=click.Choice(['likes', 'listens']),
    default='likes',
    show_default=True,
)
@click.option('--batch_size', required=True, type=int, default=256, show_default=True)
@click.option('--max_seq_len', required=False, type=int, default=200, show_default=True)
@click.option('--seed', required=False, type=int, default=42, show_default=True)
@click.option('--device', required=True, type=str, default='cuda:0', show_default=True)
def main(
    exp_name: str,
    data_dir: str,
    size: str,
    interaction: str,
    batch_size: int,
    max_seq_len: int,
    seed: int,
    device: str,
):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.set_float32_matmul_precision('high')

    path = Path.Path(data_dir) / 'sequential' / size / interaction
    df = pl.scan_parquet(path.with_suffix('.parquet'))

    logger.debug('Preprocessing data...')
    data: Data = preprocess(df, interaction, val_size=0, max_seq_len=max_seq_len)
    train_df = data.train.collect(engine="streaming")
    eval_df = data.test.collect(engine="streaming")
    logger.debug('Preprocessing data has finished!')

    eval_df = train_df.join(eval_df, on='uid', how='inner', suffix='_valid').select(
        pl.col('uid'), pl.col('item_id').alias('item_id_train'), pl.col('item_id_valid')
    )
    eval_dataset = EvalDataset(dataset=eval_df, max_seq_len=max_seq_len)

    eval_dataloader = DataLoader(
        dataset=eval_dataset,
        batch_size=batch_size,
        collate_fn=collate_fn,
        drop_last=False,
        shuffle=True,
    )

    model = torch.load(f'./checkpoints/{exp_name}_best_state.pth', weights_only=False).to(device)
    model.eval()
    with torch.inference_mode():
        user_ids, user_embeddings = infer_users(eval_dataloader=eval_dataloader, model=model, device=device)

        item_embeddings = infer_items(model=model)

    item_embeddings = Embeddings(
        ids=torch.arange(start=0, end=item_embeddings.shape[0], device=device), embeddings=item_embeddings
    )
    user_embeddings = Embeddings(ids=user_ids, embeddings=user_embeddings)

    df_user_ids = torch.tensor(eval_df['uid'].to_list(), dtype=torch.long, device=device)
    df_target_ids = [
        torch.tensor(item_ids, dtype=torch.long, device=device) for item_ids in eval_df['item_id_valid'].to_list()
    ]
    targets = Targets(user_ids=df_user_ids, item_ids=df_target_ids)
    with torch.no_grad():
        ranked = rank_items(users=user_embeddings, items=item_embeddings, num_items=100)

    metric_names = [f'{name}@{k}' for name in ["recall", "ndcg", "coverage"] for k in [10, 50, 100]]
    metrics = calc_metrics(ranked, targets, metrics=metric_names)
    print(metrics)


if __name__ == '__main__':
    main()