Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 11,853 Bytes
1be89f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from typing import Dict, Tuple

import torch
import torch.nn as nn


def create_masked_tensor(data: torch.Tensor, lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Converts a batch of variable-length sequences into a padded tensor and corresponding mask.

    Args:
        data (torch.Tensor): Input tensor containing flattened sequences.
            - For indices: shape (total_elements,) of dtype long
            - For embeddings: shape (total_elements, embedding_dim)
        lengths (torch.Tensor): 1D tensor of sequence lengths, shape (batch_size,)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]:
            - padded_tensor: Padded tensor of shape:
                - (batch_size, max_seq_len) for indices
                - (batch_size, max_seq_len, embedding_dim) for embeddings
            - mask: Boolean mask of shape (batch_size, max_seq_len) where True indicates valid elements

    Note:
        - Zero-padding is added to the right of shorter sequences
    """
    batch_size = lengths.shape[0]
    max_sequence_length = int(lengths.max().item())

    if len(data.shape) == 1:  # indices
        padded_tensor = torch.zeros(
            batch_size, max_sequence_length, dtype=data.dtype, device=data.device
        )  # (batch_size, max_seq_len)
    else:
        assert len(data.shape) == 2  # embeddings
        padded_tensor = torch.zeros(
            batch_size, max_sequence_length, *data.shape[1:], dtype=data.dtype, device=data.device
        )  # (batch_size, max_seq_len, embedding_dim)

    mask = (
        torch.arange(end=max_sequence_length, device=lengths.device)[None] < lengths[:, None]
    )  # (batch_size, max_seq_len)

    padded_tensor[mask] = data

    return padded_tensor, mask


class SASRecEncoder(nn.Module):
    def __init__(
        self,
        num_items: int,
        max_sequence_length: int,
        embedding_dim: int,
        num_heads: int,
        num_layers: int,
        dim_feedforward: int | None = None,
        dropout: float = 0.0,
        activation: nn.Module = nn.GELU(),
        layer_norm_eps: float = 1e-9,
        initializer_range: float = 0.02,
    ) -> None:
        super().__init__()
        self._num_items = num_items
        self._num_heads = num_heads
        self._embedding_dim = embedding_dim

        self._item_embeddings = nn.Embedding(
            num_embeddings=num_items + 1,  # add zero id embedding
            embedding_dim=embedding_dim,
        )
        self._position_embeddings = nn.Embedding(num_embeddings=max_sequence_length, embedding_dim=embedding_dim)

        self._layernorm = nn.LayerNorm(embedding_dim, eps=layer_norm_eps)
        self._dropout = nn.Dropout(dropout)

        transformer_encoder_layer = nn.TransformerEncoderLayer(
            d_model=embedding_dim,
            nhead=num_heads,
            dim_feedforward=dim_feedforward or 4 * embedding_dim,
            dropout=dropout,
            activation=activation,
            layer_norm_eps=layer_norm_eps,
            batch_first=True,
        )
        self._encoder = nn.TransformerEncoder(transformer_encoder_layer, num_layers)

        self._init_weights(initializer_range)

    @property
    def item_embeddings(self) -> nn.Module:
        return self._item_embeddings

    @property
    def num_items(self) -> int:
        return self._num_items

    def _apply_sequential_encoder(self, events: torch.Tensor, lengths: torch.Tensor):
        """
        Processes variable-length event sequences through a transformer encoder with positional embeddings.

        Args:
            events (torch.Tensor): Flattened tensor of event indices, shape (total_events,)
            lengths (torch.Tensor): 1D tensor of sequence lengths, shape (batch_size,)

        Returns:
            Tuple[torch.Tensor, torch.Tensor]:
                - embeddings: Processed sequence embeddings, shape (batch_size, seq_len, embedding_dim)
                - mask: Boolean mask indicating valid elements, shape (batch_size, seq_len)

        Processing Steps:
            1. Embedding Lookup:
                - Converts event indices to dense embeddings
            2. Positional Encoding:
                - Generates reverse-order positions (newest event first)
                - Adds positional embeddings to item embeddings
            3. Transformer Processing:
                - Applies layer norm and dropout
                - Uses causal attention mask for autoregressive modeling
                - Uses padding mask to ignore invalid positions

        Note:
            - Position indices are generated in reverse chronological order (newest event = position 0)
        """
        embeddings = self._item_embeddings(events)  # (total_batch_events, embedding_dim)

        embeddings, mask = create_masked_tensor(
            data=embeddings, lengths=lengths
        )  # (batch_size, seq_len, embedding_dim), (batch_size, seq_len)

        batch_size = mask.shape[0]
        seq_len = mask.shape[1]

        positions = (
            torch.arange(start=seq_len - 1, end=-1, step=-1, device=mask.device)[None].tile([batch_size, 1]).long()
        )  # (batch_size, seq_len)
        positions_mask = positions < lengths[:, None]  # (batch_size, max_seq_len)

        positions = positions[positions_mask]  # (total_batch_events)
        position_embeddings = self._position_embeddings(positions)  # (total_batch_events, embedding_dim)
        position_embeddings, _ = create_masked_tensor(
            data=position_embeddings, lengths=lengths
        )  # (batch_size, seq_len, embedding_dim)

        embeddings = embeddings + position_embeddings  # (batch_size, seq_len, embedding_dim)
        embeddings = self._layernorm(embeddings)  # (batch_size, seq_len, embedding_dim)
        embeddings = self._dropout(embeddings)  # (batch_size, seq_len, embedding_dim)
        embeddings[~mask] = 0

        causal_mask = torch.tril(torch.ones(seq_len, seq_len)).bool().to(mask.device)  # (seq_len, seq_len)
        embeddings = self._encoder(
            src=embeddings, mask=~causal_mask, src_key_padding_mask=~mask
        )  # (batch_size, seq_len, embedding_dim)

        return embeddings, mask

    @torch.no_grad()
    def _init_weights(self, initializer_range: float) -> None:
        """
        Initialize all model parameters (weights and biases) in-place.

        For each parameter in the model:
            - If the parameter name contains 'weight':
                - If it also contains 'norm' (e.g., for normalization layers), initialize with ones.
                - Otherwise, initialize with a truncated normal distribution (mean=0, std=initializer_range)
                and values clipped to the range [-2 * initializer_range, 2 * initializer_range].
            - If the parameter name contains 'bias', initialize with zeros.
            - If the parameter name does not match either case, raise a ValueError.

        Args:
            initializer_range (float): Standard deviation for the truncated normal distribution
                used to initialize non-normalization weights.

        Note:
            This method should be called during model initialization to ensure all weights and biases
            are properly set. It runs in a no-grad context and does not track gradients.
        """
        for key, value in self.named_parameters():
            if 'weight' in key:
                if 'norm' in key:
                    nn.init.ones_(value.data)
                else:
                    nn.init.trunc_normal_(
                        value.data, std=initializer_range, a=-2 * initializer_range, b=2 * initializer_range
                    )
            else:
                assert 'bias' in key
                nn.init.zeros_(value.data)

    @staticmethod
    def _get_last_embedding(embeddings: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
        """
        Extracts the embedding of the last valid (non-padded) element from each sequence in a batch.

        Args:
            embeddings (torch.Tensor): Tensor of shape (batch_size, seq_len, embedding_dim)
                containing embeddings for each element in each sequence.
            mask (torch.Tensor): Boolean tensor of shape (batch_size, seq_len) indicating
                valid (True) and padded (False) positions in each sequence.

        Returns:
            torch.Tensor: Tensor of shape (batch_size, embedding_dim) containing the embedding
                of the last valid element for each sequence in the batch.
        """
        flatten_embeddings = embeddings[mask]  # (total_batch_events, embedding_dim)
        lengths = torch.sum(mask, dim=-1)  # (batch_size)
        offsets = torch.cumsum(lengths, dim=0)  # (batch_size)
        last_embeddings = flatten_embeddings[offsets.long() - 1]  # (batch_size, embedding_dim)
        return last_embeddings

    def forward(self, inputs: Dict) -> torch.Tensor:
        """
        Forward pass of the model, handling both training and evaluation modes.

        Args:
            inputs (Dict): Input dictionary containing:
                - 'item.ids' (torch.LongTensor): Flattened tensor of item IDs for all sequences in the batch.
                    Shape: (total_batch_events,)
                - 'item.length' (torch.LongTensor): Sequence lengths for each sample in the batch.
                    Shape: (batch_size,)
                - 'positive.ids' (torch.LongTensor, training only): Positive sample IDs for contrastive learning.
                    Shape: (total_batch_events,)
                - 'negative.ids' (torch.LongTensor, training only): Negative sample IDs for contrastive learning.
                    Shape: (total_batch_events,)

        Returns:
            torch.Tensor:
                - During training: Binary cross-entropy loss between positive/negative sample scores.
                    Shape: (1,)
                - During evaluation: Embeddings of the last valid item in each sequence.
                    Shape: (batch_size, embedding_dim)
        """
        all_sample_events = inputs['item.ids']  # (total_batch_events)
        all_sample_lengths = inputs['item.length']  # (batch_size)

        embeddings, mask = self._apply_sequential_encoder(
            all_sample_events, all_sample_lengths
        )  # (batch_size, seq_len, embedding_dim), (batch_size, seq_len)

        if self.training:  # training mode
            # queries
            in_batch_queries_embeddings = embeddings[mask]  # (total_batch_events, embedding_dim)

            # positives
            in_batch_positive_events = inputs['positive.ids']  # (total_batch_events)
            in_batch_positive_embeddings = self._item_embeddings(
                in_batch_positive_events
            )  # (total_batch_events, embedding_dim)
            positive_scores = torch.einsum(
                'bd,bd->b', in_batch_queries_embeddings, in_batch_positive_embeddings
            )  # (total_batch_events)

            # negatives
            in_batch_negative_events = inputs['negative.ids']  # (total_batch_events)
            in_batch_negative_embeddings = self._item_embeddings(
                in_batch_negative_events
            )  # (total_batch_events, embedding_dim)
            negative_scores = torch.einsum(
                'bd,bd->b', in_batch_queries_embeddings, in_batch_negative_embeddings
            )  # (total_batch_events)

            loss = nn.functional.binary_cross_entropy_with_logits(
                torch.cat([positive_scores, negative_scores], dim=0),
                torch.cat([torch.ones_like(positive_scores), torch.zeros_like(negative_scores)]),
            )  # (1)

            return loss
        else:  # eval mode
            last_embeddings = self._get_last_embedding(embeddings, mask)  # (batch_size, embedding_dim)
            return last_embeddings