File size: 4,607 Bytes
1be89f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import logging
import os
import pathlib as Path
import random
import click
import numpy as np
import polars as pl
import torch
from model import SASRecEncoder
from torch.utils.data import DataLoader
from data import Data, TrainDataset, collate_fn, preprocess
logging.basicConfig(
level=logging.DEBUG, format='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
def train(
train_dataloader: DataLoader,
model: SASRecEncoder,
optimizer: torch.optim.Optimizer,
device: str = 'cpu',
num_epochs: int = 100,
):
logger.debug('Start training...')
model.train()
for epoch_num in range(num_epochs):
logger.debug(f'Start epoch {epoch_num + 1}')
for batch in train_dataloader:
for key in batch.keys():
batch[key] = batch[key].to(device)
loss = model(batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
logger.debug('Training procedure has been finished!')
return model.state_dict()
@click.command()
@click.option('--exp_name', required=True, type=str)
@click.option('--data_dir', required=True, type=str, default='../../data/', show_default=True)
@click.option('--checkpoint_dir', required=True, type=str, default='./checkpoints/', show_default=True)
@click.option(
'--size',
required=True,
type=click.Choice(['50m', '500m', '5b']),
default='50m',
show_default=True,
)
@click.option(
'--interaction',
required=True,
type=click.Choice(['likes', 'listens']),
default='likes',
show_default=True,
)
@click.option('--batch_size', required=True, type=int, default=256, show_default=True)
@click.option('--max_seq_len', required=False, type=int, default=200, show_default=True)
@click.option('--embedding_dim', required=False, type=int, default=64, show_default=True)
@click.option('--num_heads', required=False, type=int, default=2, show_default=True)
@click.option('--num_layers', required=False, type=int, default=2, show_default=True)
@click.option('--learning_rate', required=False, type=float, default=1e-3, show_default=True)
@click.option('--dropout', required=False, type=float, default=0.0, show_default=True)
@click.option('--seed', required=False, type=int, default=42, show_default=True)
@click.option('--device', required=True, type=str, default='cuda:0', show_default=True)
@click.option('--num_epochs', required=True, type=int, default=100, show_default=True)
def main(
exp_name: str,
data_dir: str,
checkpoint_dir: str,
size: str,
interaction: str,
batch_size: int,
max_seq_len: int,
embedding_dim: int,
num_heads: int,
num_layers: int,
learning_rate: float,
dropout: float,
seed: int,
device: str,
num_epochs: int,
):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.set_float32_matmul_precision('high')
data_path = Path.Path(data_dir) / 'sequential' / size / interaction
df = pl.scan_parquet(data_path.with_suffix('.parquet'))
checkpoint_path = Path.Path(checkpoint_dir) / f'{exp_name}_best_state.pth'
os.makedirs(checkpoint_dir, exist_ok=True)
logger.debug('Preprocessing data...')
data: Data = preprocess(df, interaction, val_size=0, max_seq_len=max_seq_len)
train_df = data.train.collect(engine="streaming")
logger.debug('Preprocessing data has finished!')
train_dataset = TrainDataset(dataset=train_df, num_items=data.num_items, max_seq_len=max_seq_len)
train_dataloader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
collate_fn=collate_fn,
drop_last=True,
shuffle=True,
num_workers=3,
prefetch_factor=10,
pin_memory_device="cuda",
pin_memory=True,
)
model = SASRecEncoder(
num_items=data.num_items,
max_sequence_length=max_seq_len,
embedding_dim=embedding_dim,
num_heads=num_heads,
num_layers=num_layers,
dropout=dropout,
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
best_checkpoint = train(
train_dataloader=train_dataloader, model=model, optimizer=optimizer, device=device, num_epochs=num_epochs
)
logger.debug('Saving model...')
os.makedirs(checkpoint_dir, exist_ok=True)
model.load_state_dict(best_checkpoint)
torch.save(model, checkpoint_path)
logger.debug(f'Saved model as {checkpoint_path}')
if __name__ == '__main__':
main()
|