Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,607 Bytes
1be89f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import logging
import os
import pathlib as Path
import random

import click
import numpy as np
import polars as pl
import torch
from model import SASRecEncoder
from torch.utils.data import DataLoader

from data import Data, TrainDataset, collate_fn, preprocess


logging.basicConfig(
    level=logging.DEBUG, format='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)


def train(
    train_dataloader: DataLoader,
    model: SASRecEncoder,
    optimizer: torch.optim.Optimizer,
    device: str = 'cpu',
    num_epochs: int = 100,
):
    logger.debug('Start training...')

    model.train()

    for epoch_num in range(num_epochs):
        logger.debug(f'Start epoch {epoch_num + 1}')
        for batch in train_dataloader:
            for key in batch.keys():
                batch[key] = batch[key].to(device)

            loss = model(batch)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

    logger.debug('Training procedure has been finished!')
    return model.state_dict()


@click.command()
@click.option('--exp_name', required=True, type=str)
@click.option('--data_dir', required=True, type=str, default='../../data/', show_default=True)
@click.option('--checkpoint_dir', required=True, type=str, default='./checkpoints/', show_default=True)
@click.option(
    '--size',
    required=True,
    type=click.Choice(['50m', '500m', '5b']),
    default='50m',
    show_default=True,
)
@click.option(
    '--interaction',
    required=True,
    type=click.Choice(['likes', 'listens']),
    default='likes',
    show_default=True,
)
@click.option('--batch_size', required=True, type=int, default=256, show_default=True)
@click.option('--max_seq_len', required=False, type=int, default=200, show_default=True)
@click.option('--embedding_dim', required=False, type=int, default=64, show_default=True)
@click.option('--num_heads', required=False, type=int, default=2, show_default=True)
@click.option('--num_layers', required=False, type=int, default=2, show_default=True)
@click.option('--learning_rate', required=False, type=float, default=1e-3, show_default=True)
@click.option('--dropout', required=False, type=float, default=0.0, show_default=True)
@click.option('--seed', required=False, type=int, default=42, show_default=True)
@click.option('--device', required=True, type=str, default='cuda:0', show_default=True)
@click.option('--num_epochs', required=True, type=int, default=100, show_default=True)
def main(
    exp_name: str,
    data_dir: str,
    checkpoint_dir: str,
    size: str,
    interaction: str,
    batch_size: int,
    max_seq_len: int,
    embedding_dim: int,
    num_heads: int,
    num_layers: int,
    learning_rate: float,
    dropout: float,
    seed: int,
    device: str,
    num_epochs: int,
):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.set_float32_matmul_precision('high')

    data_path = Path.Path(data_dir) / 'sequential' / size / interaction
    df = pl.scan_parquet(data_path.with_suffix('.parquet'))

    checkpoint_path = Path.Path(checkpoint_dir) / f'{exp_name}_best_state.pth'
    os.makedirs(checkpoint_dir, exist_ok=True)

    logger.debug('Preprocessing data...')
    data: Data = preprocess(df, interaction, val_size=0, max_seq_len=max_seq_len)
    train_df = data.train.collect(engine="streaming")
    logger.debug('Preprocessing data has finished!')

    train_dataset = TrainDataset(dataset=train_df, num_items=data.num_items, max_seq_len=max_seq_len)

    train_dataloader = DataLoader(
        dataset=train_dataset,
        batch_size=batch_size,
        collate_fn=collate_fn,
        drop_last=True,
        shuffle=True,
        num_workers=3,
        prefetch_factor=10,
        pin_memory_device="cuda",
        pin_memory=True,
    )

    model = SASRecEncoder(
        num_items=data.num_items,
        max_sequence_length=max_seq_len,
        embedding_dim=embedding_dim,
        num_heads=num_heads,
        num_layers=num_layers,
        dropout=dropout,
    ).to(device)

    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    best_checkpoint = train(
        train_dataloader=train_dataloader, model=model, optimizer=optimizer, device=device, num_epochs=num_epochs
    )

    logger.debug('Saving model...')

    os.makedirs(checkpoint_dir, exist_ok=True)

    model.load_state_dict(best_checkpoint)
    torch.save(model, checkpoint_path)
    logger.debug(f'Saved model as {checkpoint_path}')


if __name__ == '__main__':
    main()