Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
ploshkin's picture
Add code for benchmarking
1be89f3 verified
import json
from pathlib import Path
from typing import Any
import click
import polars as pl
import torch
from yambda.constants import Constants
from yambda.evaluation.metrics import calc_metrics
from yambda.evaluation.ranking import Embeddings, Ranked, Targets
from yambda.processing import timesplit
from yambda.utils import argmax
@click.command()
@click.option(
'--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
)
@click.option(
'--size',
required=True,
type=click.Choice(['50m', '500m', "5b"]),
default=["50m"],
multiple=True,
show_default=True,
)
@click.option(
'--interaction',
required=True,
type=click.Choice(['likes', 'listens']),
default=["likes"],
multiple=True,
show_default=True,
)
@click.option(
'--hours',
required=True,
type=float,
default=[0.5, 1, 2, 3, 6, 12, 24],
multiple=True,
show_default=True,
help="Hyperparameter",
)
@click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True)
@click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
@click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
def main(
data_dir: str,
size: list[str],
interaction: list[str],
hours: list[float],
validation_metric: str,
report_metrics: list[str],
device: str,
):
print(f"REPORT METRICS: {report_metrics}")
for s in size:
for i in interaction:
print(f"SIZE {s}, INTERACTION {i}")
result = popularity(
data_dir,
s,
i,
device,
hours=hours,
validation_metric=validation_metric,
report_metrics=report_metrics,
)
print(json.dumps(result, indent=2))
def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
path: Path = Path(path) / dataset_size / dataset_name
df = pl.scan_parquet(path.with_suffix(".parquet"))
return df
def preprocess(
df: pl.LazyFrame, interaction: str, val_size: int
) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
if interaction == "listens":
df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD)
train, val, test = timesplit.flat_split_train_val_test(
df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
)
return (
train,
val.collect(engine="streaming").lazy() if val is not None else None,
test.collect(engine="streaming").lazy(),
)
def training(hour: float, train: pl.LazyFrame, max_timestamp: float, device: str, decay: float = 0.9) -> Embeddings:
if hour == 0:
embeddings = train.group_by("item_id").agg(pl.count().alias("item_embedding")).collect(engine="streaming")
else:
tau = decay ** (1 / Constants.DAY_SECONDS / (hour / 24))
embeddings = (
train.select(
"item_id",
(tau ** (max_timestamp - pl.col("timestamp"))).alias("value"),
)
.group_by("item_id")
.agg(pl.col("value").sum().alias("item_embedding"))
.collect(engine="streaming")
)
item_ids = embeddings["item_id"].to_torch().to(device)
item_embeddings = embeddings["item_embedding"].to_torch().to(device)[:, None]
return Embeddings(item_ids, item_embeddings)
def evaluation(
train: pl.LazyFrame, val: pl.LazyFrame, device: str, hours: list[float], metrics: list[str]
) -> list[dict[str, Any]]:
num_ranked_items = max([int(x.split("@")[1]) for x in metrics])
max_timestamp = train.select(pl.col("timestamp").max()).collect(engine="streaming").item()
user_ids = train.select("uid").unique().collect(engine="streaming")["uid"].to_torch().to(device)
targets = Targets.from_sequential(
val.group_by('uid', maintain_order=True).agg("item_id"),
device,
)
hour2metrics = []
for hour in hours:
item_embeddings = training(
hour=hour,
train=train,
max_timestamp=max_timestamp,
device=device,
)
ranked = Ranked(
user_ids=user_ids,
item_ids=item_embeddings.ids[torch.topk(item_embeddings.embeddings, num_ranked_items, dim=0).indices]
.ravel()
.expand((user_ids.shape[0], num_ranked_items)),
num_item_ids=item_embeddings.ids.shape[0],
)
hour2metrics.append(calc_metrics(ranked, targets, metrics))
return hour2metrics
def popularity(
data_dir: str,
size: str,
interaction: str,
device: str,
hours: list[float],
validation_metric: str,
report_metrics: list[str],
) -> dict[str, Any]:
df = scan(data_dir, size, interaction)
# hyperopt by validation
train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE)
results = evaluation(train, val, device, hours, [validation_metric])
metric_name, k = validation_metric.split('@')
best_hour = hours[argmax(results, lambda x: x[metric_name][int(k)])]
print(f"FINAL HYPERPARAMS {best_hour=}")
# train final model
train, _, test = preprocess(df, interaction, val_size=0)
return evaluation(train, test, device, [best_hour], report_metrics)[0]
if __name__ == "__main__":
main()