|
import json |
|
from pathlib import Path |
|
|
|
import click |
|
import polars as pl |
|
import torch |
|
|
|
from yambda.constants import Constants |
|
from yambda.evaluation.metrics import calc_metrics |
|
from yambda.evaluation.ranking import Ranked, Targets |
|
from yambda.processing import timesplit |
|
from yambda.utils import mean_dicts |
|
|
|
|
|
@click.command() |
|
@click.option( |
|
'--data_dir', |
|
required=True, |
|
type=str, |
|
default="../../data/flat", |
|
show_default=True, |
|
help="Expects flat data", |
|
) |
|
@click.option( |
|
'--size', |
|
required=True, |
|
type=click.Choice(['50m', '500m', "5b"]), |
|
default=["50m"], |
|
multiple=True, |
|
show_default=True, |
|
) |
|
@click.option( |
|
'--interaction', |
|
required=True, |
|
type=click.Choice(['likes', 'listens']), |
|
default=["likes"], |
|
multiple=True, |
|
show_default=True, |
|
) |
|
@click.option('--device', required=True, type=str, default="cuda:0", show_default=True) |
|
@click.option('--num_repeats', required=True, type=int, default=2, show_default=True) |
|
def main( |
|
data_dir: str, |
|
size: list[str], |
|
interaction: list[str], |
|
device: str, |
|
num_repeats: int, |
|
): |
|
print(f"calc metrics: {Constants.METRICS}") |
|
for s in size: |
|
for i in interaction: |
|
print(f"SIZE {s}, INTERACTION {i}") |
|
result = random_rec(data_dir, s, i, num_repeats, device) |
|
print(json.dumps(result, indent=2)) |
|
|
|
|
|
def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame: |
|
path: Path = Path(path) / dataset_size / dataset_name |
|
return pl.scan_parquet(path.with_suffix(".parquet")) |
|
|
|
|
|
def preprocess( |
|
df: pl.LazyFrame, interaction: str, val_size: int |
|
) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]: |
|
if interaction == "listens": |
|
df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD) |
|
|
|
train, val, test = timesplit.flat_split_train_val_test( |
|
df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP |
|
) |
|
|
|
return ( |
|
train, |
|
val.collect(engine="streaming").lazy() if val is not None else None, |
|
test.collect(engine="streaming").lazy(), |
|
) |
|
|
|
|
|
def random_rec( |
|
data_dir: str, |
|
size: str, |
|
interaction: str, |
|
num_repeats: int, |
|
device: str, |
|
) -> dict[str, dict[int, float]]: |
|
df = scan(data_dir, size, interaction) |
|
|
|
train, _, test = preprocess(df, interaction, val_size=0) |
|
|
|
unique_user_ids = train.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_torch().to(device) |
|
|
|
unique_item_ids = ( |
|
train.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_torch().to(device) |
|
) |
|
|
|
print(f"NUM_USERS {unique_user_ids.shape[0]}, NUM_ITEMS {unique_item_ids.shape[0]}") |
|
|
|
targets = Targets.from_sequential( |
|
test.group_by('uid', maintain_order=True).agg("item_id"), |
|
device, |
|
) |
|
|
|
metrics_list = [] |
|
|
|
for _ in range(num_repeats): |
|
ranked = Ranked( |
|
user_ids=unique_user_ids, |
|
item_ids=unique_item_ids[ |
|
torch.randint( |
|
0, unique_item_ids.shape[0] - 1, size=(unique_user_ids.shape[0], Constants.NUM_RANKED_ITEMS) |
|
) |
|
], |
|
num_item_ids=unique_item_ids.shape[0], |
|
) |
|
|
|
metrics_list.append( |
|
calc_metrics( |
|
ranked, |
|
targets, |
|
metrics=Constants.METRICS, |
|
) |
|
) |
|
|
|
return mean_dicts(metrics_list) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|