import json from pathlib import Path from typing import Any import click import numpy as np import optuna import polars as pl import scipy.sparse as sp import torch from implicit.gpu.als import AlternatingLeastSquares from implicit.gpu.bpr import BayesianPersonalizedRanking from yambda.constants import Constants from yambda.evaluation.metrics import calc_metrics from yambda.evaluation.ranking import Embeddings, Targets, rank_items from yambda.processing import timesplit from yambda.utils import mean_dicts @click.command() @click.option( '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data" ) @click.option( '--size', required=True, type=click.Choice(['50m', '500m', "5b"]), default=["50m"], multiple=True, show_default=True, ) @click.option( '--interaction', required=True, type=click.Choice(['likes', 'listens']), default=["likes"], multiple=True, show_default=True, ) @click.option( "--model", required=True, type=click.Choice(['als', 'bpr']), multiple=False, show_default=True, ) @click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True) @click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True) @click.option('--device', required=True, type=str, default="cuda:0", show_default=True) def main( data_dir: str, size: list[str], interaction: list[str], model: str, validation_metric: str, report_metrics: list[str], device: str, ): print(f"REPORT METRICS: {report_metrics}") for s in size: for i in interaction: print(f"SIZE {s}, INTERACTION {i}") result = bpr_als( data_dir, s, i, device, model, validation_metric=validation_metric, report_metrics=report_metrics ) print(json.dumps(result, indent=2)) def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame: path: Path = Path(path) / dataset_size / dataset_name df = pl.scan_parquet(path.with_suffix(".parquet")) return df def preprocess( df: pl.LazyFrame, interaction: str, val_size: int ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]: if interaction == "listens": df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD).select( "uid", "item_id", "timestamp" ) train, val, test = timesplit.flat_split_train_val_test( df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP ) return ( train, val.collect(engine="streaming").lazy() if val is not None else None, test.collect(engine="streaming").lazy(), ) def process_train_data(df: pl.LazyFrame) -> tuple[pl.LazyFrame, list[int], list[int]]: unique_pairs = df.select("uid", "item_id").unique() unique_uids = df.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_list() unique_item_ids = df.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_list() return unique_pairs, unique_uids, unique_item_ids def build_csr_matrix(pairs: pl.LazyFrame, unique_uids: list[int], unique_item_ids: list[int]) -> sp.csr_matrix: uid_to_idx = {uid: i for i, uid in enumerate(unique_uids)} item_id_to_idx = {item_id: i for i, item_id in enumerate(unique_item_ids)} pairs = pairs.select( pl.col("uid").replace_strict(uid_to_idx, return_dtype=pl.UInt32), pl.col("item_id").replace_strict(item_id_to_idx, return_dtype=pl.UInt32), ).collect(engine="streaming") rows, cols = pairs["uid"].to_numpy(), pairs["item_id"].to_numpy() values = np.ones_like(rows, dtype=np.int32) return sp.coo_matrix( (values, (rows, cols)), dtype=np.float32, shape=(len(unique_uids), len(unique_item_ids)) ).tocsr() def train_embbedings_with_als( user_item_interactions: sp.csr_matrix, regularization: float = 0.01, iterations: int = 100, random_state: int = 42, factors: int = 64, ) -> tuple[np.ndarray, np.ndarray]: als = AlternatingLeastSquares( factors=factors, regularization=regularization, iterations=iterations, random_state=random_state, calculate_training_loss=False, ) als.fit(user_item_interactions, show_progress=False) return als.user_factors.to_numpy(), als.item_factors.to_numpy() def train_embbedings_with_bpr( user_item_interactions: sp.csr_matrix, learning_rate: float = 0.01, regularization: float = 0.01, iterations: int = 100, random_state: int = 42, factors: int = 64, ) -> tuple[np.ndarray, np.ndarray]: bpr = BayesianPersonalizedRanking( factors=factors, learning_rate=learning_rate, regularization=regularization, iterations=iterations, random_state=random_state, verify_negative_samples=True, ) bpr.fit(user_item_interactions, show_progress=False) return bpr.user_factors.to_numpy(), bpr.item_factors.to_numpy() def calc_embeddings_metrics( user_emb: np.ndarray, item_emb: np.ndarray, uid_tensor: torch.Tensor, item_id_tensor: torch.Tensor, targets: Targets, metrics: list[str], device: str, ) -> dict[str, dict[int, float]]: num_ranked_items = max([int(x.split("@")[1]) for x in metrics]) user_emb = Embeddings(uid_tensor, torch.from_numpy(user_emb).to(device)) item_emb = Embeddings(item_id_tensor, torch.from_numpy(item_emb).to(device)) ranked_items = rank_items(user_emb, item_emb, num_ranked_items) return calc_metrics(ranked_items, targets, metrics) def hyperopt( train: pl.LazyFrame, val: pl.LazyFrame, n_trials: int, model: str, validation_metric: str, device: str, ) -> dict[str, float | int]: pairs, unique_uids, unique_item_ids = process_train_data(train) user_item_interactions = build_csr_matrix(pairs, unique_uids, unique_item_ids) targets = Targets.from_sequential(val.group_by("uid").agg("item_id").collect(engine="streaming"), device) def objective(trial: optuna.Trial) -> float: iterations = trial.suggest_int(name="iterations", low=10, high=300, log=True) regularization = trial.suggest_float(name="regularization", low=1e-5, high=1, log=True) if model == "als": user_emb, item_emb = train_embbedings_with_als(user_item_interactions, regularization, iterations) else: learning_rate = trial.suggest_float(name="learning_rate", low=1e-5, high=0.1, log=True) user_emb, item_emb = train_embbedings_with_bpr( user_item_interactions, learning_rate, regularization, iterations ) metrics = calc_embeddings_metrics( user_emb, item_emb, torch.tensor(unique_uids, device=device), torch.tensor(unique_item_ids, device=device), targets, [validation_metric], device, ) t, k = validation_metric.split('@') return metrics[t][int(k)] optuna.logging.set_verbosity(optuna.logging.WARNING) study = optuna.create_study(direction="maximize") study.optimize(objective, n_trials=n_trials) return study.best_params def evaluation( train: pl.LazyFrame, test: pl.LazyFrame, model: str, hp: dict[str, Any], random_seeds: list[int], report_metrics: list[str], device: str, ) -> dict[str, dict[int, float]]: train, unique_uids, unique_item_ids = process_train_data(train) user_item_interactions = build_csr_matrix(train, unique_uids, unique_item_ids) targets = Targets.from_sequential( test.group_by("uid").agg("item_id").collect(engine="streaming"), device, ) metrics_list = [] for seed in random_seeds: if model == "als": user_emb, item_emb = train_embbedings_with_als( user_item_interactions, hp["regularization"], hp["iterations"], seed ) else: user_emb, item_emb = train_embbedings_with_bpr( user_item_interactions, hp["learning_rate"], hp["regularization"], hp["iterations"], seed ) metrics = calc_embeddings_metrics( user_emb, item_emb, torch.tensor(unique_uids, device=device), torch.tensor(unique_item_ids, device=device), targets, report_metrics, device, ) metrics_list.append(metrics) return mean_dicts(metrics_list) def bpr_als( data_dir: str, size: str, interaction: str, device: str, model: str, validation_metric: str, report_metrics: list[str], n_trials: dict[str, int] = {"50m": 10, "500m": 2, "5b": 2}, ): df = scan(data_dir, size, interaction) # hyperopt by validation train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE) hp = hyperopt(train, val, n_trials[size], model, validation_metric, device) print("Best HP:") print(json.dumps(hp, indent=2)) # final model train, _, test = preprocess(df, interaction, val_size=0) return evaluation( train, test, model, hp, random_seeds=[41, 42, 43], report_metrics=report_metrics, device=device, ) if __name__ == "__main__": main()