|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB |
|
|
|
We show that margin-based bitext mining in LASER's multilingual sentence space can be applied to |
|
monolingual corpora of billions of sentences to produce high quality aligned translation data. |
|
We use thirty-two snapshots of a curated common crawl corpus [1] totaling 69 billion unique sentences. |
|
Using one unified approach for 80 languages, we were able to mine 10.8 billion parallel sentences, |
|
out of which only 2.9 billion are aligned with English. |
|
|
|
IMPORTANT: Please cite reference [2][3] if you use this data. |
|
|
|
[1] Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Jouli |
|
and Edouard Grave, CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data |
|
|
|
[2] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin, |
|
CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB |
|
|
|
[3] Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, |
|
Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, |
|
Sergey Edunov, Edouard Grave, Michael Auli, and Armand Joulin. |
|
Beyond English-Centric Multilingual Machine Translation |
|
|
|
90 languages, 1,197 bitexts |
|
total number of files: 90 |
|
total number of tokens: 112.14G |
|
total number of sentence fragments: 7.37G |
|
""" |
|
_HOMEPAGE_URL = "https://opus.nlpl.eu/CCMatrix.php" |
|
_CITATION = """\ |
|
Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Jouli and Edouard Grave, CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data |
|
""" |
|
|
|
_VERSION = "1.0.0" |
|
_FILE = "CCMatrix.{}.{}" |
|
_DOWNLOAD_URL = "https://opus.nlpl.eu/download.php?f=CCMatrix/v1/moses/{}.txt.zip" |
|
|
|
_LANGUAGES = ["nl", "en", "de", "fr", "es", "lt", "it"] |
|
|
|
_LANGUAGE_PAIRS = [(l1, l2) for l1 in _LANGUAGES for l2 in _LANGUAGES if l1 != l2] |
|
_SIZES = ["", "1000_000", "25_000_000"] |
|
|
|
_CONFIGS = [(l1, l2, size) for (l1, l2) in _LANGUAGE_PAIRS for size in _SIZES] |
|
|
|
|
|
class CCMatrixConfig(datasets.BuilderConfig): |
|
def __init__(self, *args, lang1=None, lang2=None, size=None, **kwargs): |
|
super().__init__( |
|
*args, |
|
name=f"{lang1}-{lang2}{'-' + size if size else ''}", |
|
**kwargs, |
|
) |
|
self.lang1 = lang1 |
|
self.lang2 = lang2 |
|
self.size = size |
|
x, y = (lang1, lang2) if lang1 < lang2 else (lang2, lang1) |
|
self.download_pair = f"{x}-{y}" |
|
|
|
|
|
class CCMatrix(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
CCMatrixConfig( |
|
lang1=lang1, |
|
lang2=lang2, |
|
size=size, |
|
description=f"Translating {lang1} to {lang2} or vice versa{ ' ' + size + ' rows' if size else ''}", |
|
version=datasets.Version(_VERSION), |
|
) |
|
for lang1, lang2, size in _CONFIGS |
|
] |
|
BUILDER_CONFIG_CLASS = CCMatrixConfig |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"score": datasets.Value("float"), |
|
"translation": datasets.Translation( |
|
languages=(self.config.lang1, self.config.lang2) |
|
), |
|
}, |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
download_url = _DOWNLOAD_URL.format(self.config.download_pair) |
|
path = dl_manager.download_and_extract(download_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"datapath": path}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, datapath): |
|
l1_path = os.path.join( |
|
datapath, _FILE.format(self.config.download_pair, self.config.lang1) |
|
) |
|
l2_path = os.path.join( |
|
datapath, _FILE.format(self.config.download_pair, self.config.lang2) |
|
) |
|
scores_path = os.path.join( |
|
datapath, _FILE.format(self.config.download_pair, "scores") |
|
) |
|
with open(l1_path, encoding="utf-8") as f1, open( |
|
l2_path, encoding="utf-8" |
|
) as f2, open(scores_path, encoding="utf-8") as f3: |
|
for sentence_counter, (x, y, score) in enumerate(zip(f1, f2, f3)): |
|
if self.config.size and sentence_counter == int(self.config.size): |
|
return |
|
result = ( |
|
sentence_counter, |
|
{ |
|
"id": sentence_counter, |
|
"score": score, |
|
"translation": { |
|
self.config.lang1: x.strip(), |
|
self.config.lang2: y.strip(), |
|
}, |
|
}, |
|
) |
|
yield result |
|
|