File size: 3,109 Bytes
f08a817
 
3663d5c
 
 
 
 
9d9a651
 
3663d5c
 
 
f08a817
 
3663d5c
 
f08a817
3663d5c
 
f08a817
3663d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9a651
3663d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f08a817
9d9a651
 
 
 
f08a817
 
3663d5c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
library_name: peft
license: gemma
base_model: google/gemma-3-1b-it
tags:
- axolotl
- generated_from_trainer
datasets:
- deepakkarkala/sft_sitcom_chandlerbing_jsonl
model-index:
- name: gemma3_1b_lora_sft_sitcom
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.10.0.dev0`
```yaml
adapter: qlora
base_model: google/gemma-3-1b-it
bf16: auto
chat_template: gemma3
datasets:
- path: deepakkarkala/sft_sitcom_chandlerbing_jsonl
  split: train_without_fewshots
  type: alpaca
ddp_find_unused_parameters: true
eval_sample_packing: false
evals_per_epoch: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
hub_model_id: deepakkarkala/gemma3_1b_lora_sft_sitcom
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sequence_len: 2048
special_tokens: null
tf32: true
tokenizer_type: AutoTokenizer
val_set_size: 0.05
wandb_entity: deepakkarkala-personal
wandb_log_model: checkpoint
wandb_name: sft_gemma3_1b
wandb_project: finetuning_llama31_8b_sitcom
wandb_run_id: sft_gemma3_1b_2
wandb_watch: null
warmup_ratio: 0.1
weight_decay: 0.0

```

</details><br>

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/deepakkarkala-personal/finetuning_llama31_8b_sitcom/runs/sft_gemma3_1b_2)
# gemma3_1b_lora_sft_sitcom

This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the deepakkarkala/sft_sitcom_chandlerbing_jsonl dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 26
- training_steps: 264

### Training results



### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1