File size: 6,797 Bytes
9e3dd30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
from transformers import AutoTokenizer, AutoConfig, DistilBertForQuestionAnswering  # Correct import
import onnx
from onnxruntime.quantization import quantize_dynamic, QuantType
import os
import logging
from typing import Optional, Dict, Any

class ONNXModelConverter:
    def __init__(self, model_name: str, output_dir: str):
        self.model_name = model_name
        self.output_dir = output_dir
        self.setup_logging()

        os.makedirs(output_dir, exist_ok=True)

        self.logger.info(f"Loading tokenizer {model_name}...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

        self.logger.info(f"Loading model config {model_name}...")
        config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)

        self.logger.info(f"Loading model {model_name}...")
        try:
            self.model = DistilBertForQuestionAnswering.from_pretrained(
                model_name,
                config=config,
                trust_remote_code=True,
                torch_dtype=torch.float32  # Keep this for consistency, though it might not be strictly necessary
            )
        except Exception as e: # Catch the exception if pytorch weights are not found
            self.logger.info(f"Trying to load tensorflow weights")
            try:
                self.model = DistilBertForQuestionAnswering.from_pretrained(
                    model_name,
                    config=config,
                    trust_remote_code=True,
                    from_tf=True # Load from TensorFlow weights
                )
            except Exception as e:
                self.logger.error(f"Failed to load the model: {e}")
                raise # Re-raise the exception after logging

        self.model.eval()

    def setup_logging(self):
        self.logger = logging.getLogger(__name__)
        self.logger.setLevel(logging.INFO)
        handler = logging.StreamHandler()
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        handler.setFormatter(formatter)
        self.logger.addHandler(handler)

    def prepare_dummy_inputs(self):
        dummy_input = self.tokenizer(
            "Hello, how are you?",
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=128
        )
        dummy_input.pop('token_type_ids', None)
        return {
            'input_ids': dummy_input['input_ids'],
            'attention_mask': dummy_input['attention_mask'],
        }

    def export_to_onnx(self):
        output_path = os.path.join(self.output_dir, "model.onnx")
        inputs = self.prepare_dummy_inputs()

        dynamic_axes = {
            'input_ids': {0: 'batch_size', 1: 'sequence_length'},
            'attention_mask': {0: 'batch_size', 1: 'sequence_length'},
            'start_logits': {0: 'batch_size', 1: 'sequence_length'},
            'end_logits': {0: 'batch_size', 1: 'sequence_length'},
        }

        class ModelWrapper(torch.nn.Module):
            def __init__(self, model):
                super().__init__()
                self.model = model

            def forward(self, input_ids, attention_mask):
                outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
                return outputs.start_logits, outputs.end_logits

        wrapped_model = ModelWrapper(self.model)

        try:
            torch.onnx.export(
                wrapped_model,
                (inputs['input_ids'], inputs['attention_mask']),
                output_path,
                export_params=True,
                opset_version=14,  # Or a suitable version
                do_constant_folding=True,
                input_names=['input_ids', 'attention_mask'],
                output_names=['start_logits', 'end_logits'],
                dynamic_axes=dynamic_axes,
                verbose=False
            )
            self.logger.info(f"Model exported to {output_path}")
            return output_path
        except Exception as e:
            self.logger.error(f"ONNX export failed: {str(e)}")
            raise

    def verify_model(self, model_path: str):
        try:
            onnx_model = onnx.load(model_path)
            onnx.checker.check_model(onnx_model)
            self.logger.info("ONNX model verification successful")
            return True
        except Exception as e:
            self.logger.error(f"Model verification failed: {str(e)}")
            return False

    def quantize_model(self, model_path: str):
        weight_types = {'int4':QuantType.QInt4, 'int8':QuantType.QInt8, 'uint4':QuantType.QUInt4, 'uint8':QuantType.QUInt8, 'uint16':QuantType.QUInt16, 'int16':QuantType.QInt16}
        all_quantized_paths = []
        for weight_type in weight_types.keys():
            quantized_path = os.path.join(self.output_dir, "model_" + weight_type + ".onnx")

            try:
                quantize_dynamic(
                    model_path,
                    quantized_path,
                    weight_type=weight_types[weight_type]
                )
                self.logger.info(f"Model quantized ({weight_type}) and saved to {quantized_path}")
                all_quantized_paths.append(quantized_path)
            except Exception as e:
                self.logger.error(f"Quantization ({weight_type}) failed: {str(e)}")
                raise

        return all_quantized_paths

    def convert(self):
        try:
            onnx_path = self.export_to_onnx()

            if self.verify_model(onnx_path):
                quantized_paths = self.quantize_model(onnx_path)

                tokenizer_path = os.path.join(self.output_dir, "tokenizer")
                self.tokenizer.save_pretrained(tokenizer_path)
                self.logger.info(f"Tokenizer saved to {tokenizer_path}")

                return {
                    'onnx_model': onnx_path,
                    'quantized_models': quantized_paths,
                    'tokenizer': tokenizer_path
                }
            else:
                raise Exception("Model verification failed")

        except Exception as e:
            self.logger.error(f"Conversion process failed: {str(e)}")
            raise

if __name__ == "__main__":
    MODEL_NAME = "Docty/question_and_answer"  # Or any other suitable model
    OUTPUT_DIR = "onnx"

    try:
        converter = ONNXModelConverter(MODEL_NAME, OUTPUT_DIR)
        results = converter.convert()

        print("\nConversion completed successfully!")
        print(f"ONNX model path: {results['onnx_model']}")
        print(f"Quantized model paths: {results['quantized_models']}")
        print(f"Tokenizer path: {results['tokenizer']}")

    except Exception as e:
        print(f"Conversion failed: {str(e)}")