File size: 3,326 Bytes
d89bd09
 
 
 
1214db1
d89bd09
bab294e
d89bd09
 
 
 
 
 
 
 
 
5975792
d89bd09
 
 
5975792
d89bd09
5975792
d89bd09
 
bab294e
d89bd09
 
 
 
 
 
1214db1
d89bd09
 
5975792
 
d89bd09
5975792
 
654097c
d89bd09
5975792
 
 
 
d89bd09
 
5975792
d89bd09
 
 
 
5975792
d89bd09
5975792
 
 
d89bd09
5975792
654097c
5975792
bab294e
d89bd09
 
5975792
bab294e
5975792
d89bd09
5975792
d89bd09
654097c
5975792
d89bd09
 
 
 
 
5975792
654097c
 
bab294e
654097c
 
bab294e
654097c
d89bd09
5975792
d89bd09
 
 
 
 
bab294e
d89bd09
1214db1
d89bd09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5975792
 
 
d89bd09
5975792
 
 
 
654097c
 
d89bd09
 
 
 
 
 
 
5975792
 
d89bd09
5975792
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
library_name: peft
tags:
- generated_from_trainer
base_model: samoline/b7447218-27e6-491c-b3ab-ea03a5b93541
model-index:
- name: app/checkpoints/test1334test1234test1234test12334/texttest
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.11.0.dev0`
```yaml
adapter: lora
base_model: samoline/b7447218-27e6-491c-b3ab-ea03a5b93541
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - test1334test1234test1234test12334_train_data.json
  ds_type: json
  format: custom
  path: /workspace/axolotl/data
  type:
    field_instruction: instruct
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1
micro_batch_size: 2
mlflow_experiment_name: /workspace/axolotl/data/test1334test1234test1234test12334_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: /app/checkpoints/test1334test1234test1234test12334/texttest
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: test1334test1234test1234test12334_texttest
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: test1334test1234test1234test12334_texttest
warmup_steps: 1
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# app/checkpoints/test1334test1234test1234test12334/texttest

This model was trained from scratch on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 1

### Training results



### Framework versions

- PEFT 0.15.2
- Transformers 4.53.1
- Pytorch 2.5.1+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2