File size: 9,734 Bytes
ae7fe37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python",
      "version": "3.10.13",
      "mimetype": "text/x-python",
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "pygments_lexer": "ipython3",
      "nbconvert_exporter": "python",
      "file_extension": ".py"
    },
    "kaggle": {
      "accelerator": "none",
      "dataSources": [],
      "dockerImageVersionId": 30746,
      "isInternetEnabled": false,
      "language": "python",
      "sourceType": "notebook",
      "isGpuEnabled": false
    }
  },
  "nbformat_minor": 0,
  "nbformat": 4,
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "# --- INSTALLATION ---\n",
        "\n",
        "!pip install pandas numpy matplotlib nltk scikit-learn transformers datasets torch\n",
        "!kaggle datasets download -d shanegerami/ai-vs-human-text\n",
        "!unzip -n ai-vs-human-text.zip\n",
        "!rm ai-vs-human-text.zip\n",
        "\n",
        "# -------------------------"
      ],
      "metadata": {
        "id": "XKWBDF8lir6o",
        "execution": {
          "iopub.status.busy": "2024-08-14T18:13:18.903225Z",
          "iopub.execute_input": "2024-08-14T18:13:18.903635Z",
          "iopub.status.idle": "2024-08-14T18:14:34.119173Z",
          "shell.execute_reply.started": "2024-08-14T18:13:18.903599Z",
          "shell.execute_reply": "2024-08-14T18:14:34.117649Z"
        },
        "trusted": true
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# --- IMPORTS ---\n",
        "\n",
        "import pandas as pd\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "import re\n",
        "import nltk\n",
        "from nltk.corpus import stopwords\n",
        "nltk.download('stopwords')\n",
        "stopwords = set(stopwords.words('english'))\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n",
        "from transformers import AutoTokenizer, AutoModelForSequenceClassification\n",
        "from transformers import Trainer, TrainingArguments, DataCollatorWithPadding\n",
        "from datasets import Dataset\n",
        "import torch\n",
        "\n",
        "# -------------------------"
      ],
      "metadata": {
        "id": "q9TGKRUIiPMy"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# --- USEFUL FUNCTIONS ----\n",
        "\n",
        "def clean_text(text):\n",
        "    \"\"\"\n",
        "    This funtion get's rid of nonalphabetical characters, stopwords and lower cases the text.\n",
        "\n",
        "    Args:\n",
        "    text (str): The text to be cleaned\n",
        "\n",
        "    Returns:\n",
        "    text (str): The cleaned text\n",
        "\n",
        "    Example:\n",
        "    df['text'] = df['text'].apply(clean_text)\n",
        "    \"\"\"\n",
        "    text = re.sub(r'[^a-zA-Z]', ' ', text)\n",
        "    text = text.lower()\n",
        "    words = text.split()\n",
        "    text = [word for word in words if not word in stopwords]\n",
        "    text = ' '.join(words)\n",
        "    return text\n",
        "\n",
        "def tokenize_function(dataframe):\n",
        "    \"\"\"\n",
        "    This funtion tokenizes the 'text' field of the dataframe.\n",
        "\n",
        "    Args:\n",
        "    dataframe (pandas.DataFrame): The dataframe to be tokenized\n",
        "\n",
        "    Returns:\n",
        "    dataframe (pandas.DataFrame): The tokenized dataframe\n",
        "\n",
        "    Example and output:\n",
        "    train_dataset_token = train_dataset.map(tokenize_function, batched=True)\n",
        "    \"\"\"\n",
        "    return tokenizer(dataframe[\"text\"], truncation=True)\n",
        "\n",
        "def compute_metrics(eval_pred):\n",
        "    \"\"\"\n",
        "    This funtion computes the accuracy, precision, recall and f1 score of the model.\n",
        "\n",
        "    It'is passed to the trainer and it outputs when evaluating the model.\n",
        "\n",
        "    Args:\n",
        "    eval_pred (tuple): The predictions and labels of the model\n",
        "\n",
        "    Returns:\n",
        "    dict: The accuracy, precision, recall and f1 score of the model\n",
        "\n",
        "    Example:\n",
        "    >>> trainer.evaluate()\n",
        "    {\n",
        "        'accuracy': accuracy,\n",
        "        'precision': precision,\n",
        "        'recall': recall,\n",
        "        'f1': f1\n",
        "    }\n",
        "    \"\"\"\n",
        "    predictions, labels = eval_pred\n",
        "    predictions = predictions.argmax(axis=-1)\n",
        "    accuracy = accuracy_score(labels, predictions)\n",
        "    precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')\n",
        "    return {\n",
        "        'accuracy': accuracy,\n",
        "        'precision': precision,\n",
        "        'recall': recall,\n",
        "        'f1': f1\n",
        "    }\n",
        "\n",
        "# -------------------------"
      ],
      "metadata": {
        "id": "JtYsc4hJAnk3"
      },
      "execution_count": 41,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# --- LOADING THE MODEL ---\n",
        "\n",
        "# Load the initial tokenizer and model to set the number of labels its going to classify as 2\n",
        "checkpoint = \"diegovelilla/EssAI\"\n",
        "tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
        "model = AutoModelForSequenceClassification.from_pretrained(checkpoint)\n",
        "\n",
        "# -------------------------"
      ],
      "metadata": {
        "id": "P87A1UTgJIia"
      },
      "execution_count": 42,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# --- DATA PREPROCESSING ---\n",
        "\n",
        "df = pd.read_csv('AI_Human.csv')\n",
        "\n",
        "# Separate human from ai\n",
        "df_human = df[df[\"generated\"] == 0]\n",
        "df_ai = df[df[\"generated\"] == 1]\n",
        "\n",
        "# We take as many human written esssays as AI generate since the dataset is a bit unbalanced\n",
        "df_ai_len = df_ai[\"text\"].count()\n",
        "df_human = df_human.sample(n=df_ai_len)\n",
        "\n",
        "# We concatenate both dataframes, shuffle them and then we take 1% of them since those will be enough to fine tune the model\n",
        "# and with my current resources I won't be able to process more. For better results increase the fraction of the data used.\n",
        "df_unshuffled = pd.concat([df_human, df_ai])\n",
        "df = df_unshuffled.sample(frac=0.01).reset_index(drop=True)\n",
        "\n",
        "# Get rid of nonalphatetical characters, stopwords and we lower case it.\n",
        "df['text'] = df['text'].apply(clean_text)\n",
        "\n",
        "# According to the transformers library of hugging face the targets column name should be labels and ints\n",
        "df = df.rename(columns={'generated': 'labels'})\n",
        "df['labels'] = df['labels'].astype(int)\n",
        "\n",
        "# We convert the pandas dataframe into a hugging face dataset and tokenize both of them\n",
        "ds = Dataset.from_pandas(df)\n",
        "ds_token = ds.map(tokenize_function, batched=True)\n",
        "\n",
        "# Drop columns that are not necessary and set the dataset format to pytorch tensors\n",
        "ds_token = ds_token.remove_columns([\"text\", \"token_type_ids\"])\n",
        "ds_token.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])\n",
        "\n",
        "# -------------------------\n"
      ],
      "metadata": {
        "id": "rYaHbUCDG7tf"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# --- INSTANTIATING TRAINER ----\n",
        "\n",
        "# We instantiate a DataCollatorWithPadding in order to pad the inputs in batches while training\n",
        "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
        "\n",
        "# Create the training arguments\n",
        "training_args = TrainingArguments(\"./results\")\n",
        "\n",
        "# Create the trainer\n",
        "trainer = Trainer(\n",
        "    model,\n",
        "    training_args,\n",
        "    eval_dataset=ds_token,\n",
        "    data_collator=data_collator,\n",
        "    tokenizer=tokenizer,\n",
        "    compute_metrics = compute_metrics\n",
        ")\n",
        "\n",
        "# -------------------------"
      ],
      "metadata": {
        "id": "Golh92ee33aA"
      },
      "execution_count": 50,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# --- EVALUATION ---\n",
        "\n",
        "evaluation_results = trainer.evaluate()\n",
        "\n",
        "print(\"Accuracy:\", evaluation_results['eval_accuracy'])\n",
        "print(\"Precision:\", evaluation_results['eval_precision'])\n",
        "print(\"Recall:\", evaluation_results['eval_recall'])\n",
        "print(\"F1:\", evaluation_results['eval_f1'])\n",
        "\n",
        "# -------------------------"
      ],
      "metadata": {
        "id": "WkQgrxgFPkpJ"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}