Upload folder using huggingface_hub
Browse files- README.md +19 -0
- __pycache__/block.cpython-311.pyc +0 -0
- block.py +106 -0
- config.json +7 -0
- requirements.txt +0 -0
README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Florence2 Image Annotator
|
2 |
+
|
3 |
+
```python
|
4 |
+
import torch
|
5 |
+
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
|
6 |
+
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
|
7 |
+
from diffusers.utils import load_image
|
8 |
+
|
9 |
+
# fetch the Florence2 image annotator block that will create our mask
|
10 |
+
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence2-image-annotator", trust_remote_code=True)
|
11 |
+
|
12 |
+
my_blocks = INPAINT_BLOCKS.copy()
|
13 |
+
# insert the annotation block before the image encoding step
|
14 |
+
my_blocks.insert("image_annotator", image_annotator_block, 1)
|
15 |
+
|
16 |
+
# Create our initial set of inpainting blocks
|
17 |
+
blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks)
|
18 |
+
pipe = blocks.init_pipeline()
|
19 |
+
```
|
__pycache__/block.cpython-311.pyc
ADDED
Binary file (5.05 kB). View file
|
|
block.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
from PIL import Image, ImageDraw
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from diffusers.modular_pipelines import (
|
6 |
+
PipelineState,
|
7 |
+
ModularPipelineBlocks,
|
8 |
+
InputParam,
|
9 |
+
ComponentSpec,
|
10 |
+
OutputParam,
|
11 |
+
)
|
12 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
13 |
+
|
14 |
+
|
15 |
+
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
|
16 |
+
@property
|
17 |
+
def expected_components(self):
|
18 |
+
return [
|
19 |
+
ComponentSpec(
|
20 |
+
name="image_annotator",
|
21 |
+
type_hint=AutoModelForCausalLM,
|
22 |
+
repo="microsoft/Florence-2-large",
|
23 |
+
),
|
24 |
+
ComponentSpec(
|
25 |
+
name="image_annotator_processor",
|
26 |
+
type_hint=AutoProcessor,
|
27 |
+
repo="microsoft/Florence-2-large",
|
28 |
+
),
|
29 |
+
]
|
30 |
+
|
31 |
+
@property
|
32 |
+
def inputs(self) -> List[InputParam]:
|
33 |
+
return [
|
34 |
+
InputParam(
|
35 |
+
"image",
|
36 |
+
Image,
|
37 |
+
required=True,
|
38 |
+
description="Image(s) to annotate",
|
39 |
+
),
|
40 |
+
InputParam(
|
41 |
+
"annotation_task_prompt",
|
42 |
+
Union[str, List[str]],
|
43 |
+
required=True,
|
44 |
+
description="""Annotation Task to perform on the image.
|
45 |
+
""",
|
46 |
+
),
|
47 |
+
]
|
48 |
+
|
49 |
+
@property
|
50 |
+
def intermediates_outputs(self) -> List[OutputParam]:
|
51 |
+
return [
|
52 |
+
OutputParam(
|
53 |
+
"mask",
|
54 |
+
type_hint=torch.Tensor,
|
55 |
+
description="Depth Map(s) of input Image(s)",
|
56 |
+
),
|
57 |
+
]
|
58 |
+
|
59 |
+
def annotate_image(self, image, prompt):
|
60 |
+
inputs = self.image_annotator_processor(
|
61 |
+
text=prompt, images=image, return_tensors="pt"
|
62 |
+
)
|
63 |
+
generated_ids = self.annotator.generate(
|
64 |
+
input_ids=inputs["input_ids"],
|
65 |
+
pixel_values=inputs["pixel_values"],
|
66 |
+
max_new_tokens=1024,
|
67 |
+
early_stopping=False,
|
68 |
+
do_sample=False,
|
69 |
+
num_beams=3,
|
70 |
+
)
|
71 |
+
annotations = self.image_annotator_processor.batch_decode(
|
72 |
+
generated_ids, skip_special_tokens=False
|
73 |
+
)[0]
|
74 |
+
annotations = self.image_annotator_processor.post_process_generation(
|
75 |
+
annotations, task=prompt, image_size=(image.height, image.width)
|
76 |
+
)
|
77 |
+
|
78 |
+
return annotations
|
79 |
+
|
80 |
+
def prepare_mask(self, images, annotations):
|
81 |
+
masks = []
|
82 |
+
for image, annotation in zip(images, annotations):
|
83 |
+
mask_image = Image.new("L", image.size, 0)
|
84 |
+
draw = ImageDraw.Draw(mask_image)
|
85 |
+
draw.polygon(annotation["polygon"], fill="white")
|
86 |
+
masks.append(mask_image)
|
87 |
+
|
88 |
+
return masks
|
89 |
+
|
90 |
+
@torch.no_grad()
|
91 |
+
def __call__(self, pipeline, state: PipelineState) -> PipelineState:
|
92 |
+
block_state = self.get_block_state(state)
|
93 |
+
|
94 |
+
images = block_state.image
|
95 |
+
annotation_task_prompt = block_state.annotation_task_prompt
|
96 |
+
|
97 |
+
if not isinstance(annotation_task_prompt, list):
|
98 |
+
annotation_task_prompt = [annotation_task_prompt]
|
99 |
+
|
100 |
+
if len(images) != len(annotation_task_prompt):
|
101 |
+
raise ValueError("Number of images and annotation prompts must match")
|
102 |
+
|
103 |
+
annotations = self.annotate_image(images, annotation_task_prompt)
|
104 |
+
block_state.mask = self.prepare_mask(images, annotations)
|
105 |
+
|
106 |
+
self.set_block_state(block_state)
|
config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "Florence2ImageAnnotatorBlock",
|
3 |
+
"_diffusers_version": "0.35.0.dev0",
|
4 |
+
"auto_map": {
|
5 |
+
"ModularPipelineBlocks": "block.Florence2ImageAnnotatorBlock"
|
6 |
+
}
|
7 |
+
}
|
requirements.txt
ADDED
File without changes
|