tools / run_local_xl.py
patrickvonplaten's picture
improve sd xl
e990e13
raw
history blame
2.29 kB
#!/usr/bin/env python3
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import time
from pytorch_lightning import seed_everything
import os
from huggingface_hub import HfApi
# from compel import Compel
import torch
import sys
from pathlib import Path
import requests
from PIL import Image
from io import BytesIO
api = HfApi()
start_time = time.time()
use_refiner = bool(int(sys.argv[1]))
# pipe_1 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/nichijoufan777/stable-diffusion-xl-base-0.9/blob/main/sd_xl_base_0.9.safetensors", torch_dtype=torch.float16, use_safetensors=True)
pipe.to("cuda")
# pipe.enable_model_cpu_offload()
if use_refiner:
refiner = StableDiffusionXLImg2ImgPipeline.from_single_file("https://huggingface.co/nichijoufan777/stable-diffusion-xl-refiner-0.9/blob/main/sd_xl_refiner_0.9.safetensors", torch_dtype=torch.float16)
refiner.to("cuda")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
seed_everything(0)
image = pipe(prompt=prompt, output_type="latent" if use_refiner else "pil").images[0]
# image = pipe(prompt=prompt, output_type="latent" if use_refiner else "pil").images[0]
if use_refiner:
image = refiner(prompt=prompt, image=image[None, :]).images[0]
# pipe.unet.to(memory_format=torch.channels_last)
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
# pipe(prompt=prompt, num_inference_steps=2).images[0]
# image = pipe(prompt=prompt, num_images_per_prompt=1, num_inference_steps=40, output_type="latent").images
file_name = f"aaa"
path = os.path.join(Path.home(), "images", f"{file_name}.png")
image.save(path)
api.upload_file(
path_or_fileobj=path,
path_in_repo=path.split("/")[-1],
repo_id="patrickvonplaten/images",
repo_type="dataset",
)
print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")