#!/usr/bin/env python3 from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline import time from pytorch_lightning import seed_everything import os from huggingface_hub import HfApi # from compel import Compel import torch import sys from pathlib import Path import requests from PIL import Image from io import BytesIO api = HfApi() start_time = time.time() use_refiner = bool(int(sys.argv[1])) use_diffusers = True if use_diffusers: start_time = time.time() pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True) pipe.to("cuda") if use_refiner: refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") refiner.to("cuda") # refiner.enable_sequential_cpu_offload() else: pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/sd_xl_base_0.9.safetensors", torch_dtype=torch.float16, use_safetensors=True) pipe.to("cuda") if use_refiner: refiner = StableDiffusionXLImg2ImgPipeline.from_single_file("https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9/blob/main/sd_xl_refiner_0.9.safetensors", torch_dtype=torch.float16, use_safetensors=True) refiner.to("cuda") prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" seed_everything(0) image = pipe(prompt=prompt, num_inference_steps=2, output_type="latent" if use_refiner else "pil").images[0] # image = pipe(prompt=prompt, output_type="latent" if use_refiner else "pil").images[0] if use_refiner: image = refiner(prompt=prompt, num_inference_steps=5, image=image[None, :]).images[0] # pipe.unet.to(memory_format=torch.channels_last) # pipe(prompt=prompt, num_inference_steps=2).images[0] # image = pipe(prompt=prompt, num_images_per_prompt=1, num_inference_steps=40, output_type="latent").images file_name = f"aaa" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")