Dionyssos commited on
Commit
64ccdd0
·
1 Parent(s): 62ef231

DEBUG interpolation of voice style

Browse files
Files changed (4) hide show
  1. Modules/hifigan.py +10 -9
  2. Modules/utils.py +0 -14
  3. models.py +30 -138
  4. msinference.py +31 -71
Modules/hifigan.py CHANGED
@@ -3,11 +3,12 @@ import torch.nn.functional as F
3
  import torch.nn as nn
4
  from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
  from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
6
- from .utils import init_weights, get_padding
7
-
8
  import math
9
  import random
10
- import numpy as np
 
 
 
11
 
12
  LRELU_SLOPE = 0.1
13
 
@@ -42,7 +43,7 @@ class AdaINResBlock1(torch.nn.Module):
42
  weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
43
  padding=get_padding(kernel_size, dilation[2])))
44
  ])
45
- self.convs1.apply(init_weights)
46
 
47
  self.convs2 = nn.ModuleList([
48
  weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
@@ -52,7 +53,7 @@ class AdaINResBlock1(torch.nn.Module):
52
  weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
53
  padding=get_padding(kernel_size, 1)))
54
  ])
55
- self.convs2.apply(init_weights)
56
 
57
  self.adain1 = nn.ModuleList([
58
  AdaIN1d(style_dim, channels),
@@ -274,8 +275,6 @@ class SourceModuleHnNSF(torch.nn.Module):
274
  # source for noise branch, in the same shape as uv
275
  noise = torch.randn_like(uv) * self.sine_amp / 3
276
  return sine_merge, noise, uv
277
- def padDiff(x):
278
- return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
279
 
280
  class Generator(torch.nn.Module):
281
  def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
@@ -323,8 +322,7 @@ class Generator(torch.nn.Module):
323
  self.resblocks.append(resblock(ch, k, d, style_dim))
324
 
325
  self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
326
- self.ups.apply(init_weights)
327
- self.conv_post.apply(init_weights)
328
 
329
  def forward(self, x, s, f0):
330
 
@@ -365,6 +363,9 @@ class Generator(torch.nn.Module):
365
 
366
 
367
  class AdainResBlk1d(nn.Module):
 
 
 
368
  def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
369
  upsample='none', dropout_p=0.0):
370
  super().__init__()
 
3
  import torch.nn as nn
4
  from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
  from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
 
 
6
  import math
7
  import random
8
+ import numpy as np
9
+
10
+ def get_padding(kernel_size, dilation=1):
11
+ return int((kernel_size*dilation - dilation)/2)
12
 
13
  LRELU_SLOPE = 0.1
14
 
 
43
  weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
44
  padding=get_padding(kernel_size, dilation[2])))
45
  ])
46
+ # self.convs1.apply(init_weights)
47
 
48
  self.convs2 = nn.ModuleList([
49
  weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
 
53
  weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
54
  padding=get_padding(kernel_size, 1)))
55
  ])
56
+ # self.convs2.apply(init_weights)
57
 
58
  self.adain1 = nn.ModuleList([
59
  AdaIN1d(style_dim, channels),
 
275
  # source for noise branch, in the same shape as uv
276
  noise = torch.randn_like(uv) * self.sine_amp / 3
277
  return sine_merge, noise, uv
 
 
278
 
279
  class Generator(torch.nn.Module):
280
  def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
 
322
  self.resblocks.append(resblock(ch, k, d, style_dim))
323
 
324
  self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
325
+
 
326
 
327
  def forward(self, x, s, f0):
328
 
 
363
 
364
 
365
  class AdainResBlk1d(nn.Module):
366
+
367
+ # also used in ProsodyPredictor()
368
+
369
  def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
370
  upsample='none', dropout_p=0.0):
371
  super().__init__()
Modules/utils.py DELETED
@@ -1,14 +0,0 @@
1
- def init_weights(m, mean=0.0, std=0.01):
2
- classname = m.__class__.__name__
3
- if classname.find("Conv") != -1:
4
- m.weight.data.normal_(mean, std)
5
-
6
-
7
- def apply_weight_norm(m):
8
- classname = m.__class__.__name__
9
- if classname.find("Conv") != -1:
10
- weight_norm(m)
11
-
12
-
13
- def get_padding(kernel_size, dilation=1):
14
- return int((kernel_size*dilation - dilation)/2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models.py CHANGED
@@ -8,7 +8,7 @@ import torch.nn.functional as F
8
  from torch.nn.utils import weight_norm, spectral_norm
9
  from Utils.ASR.models import ASRCNN
10
  from Utils.JDC.model import JDCNet
11
- from Modules.hifigan import AdaIN1d
12
  import yaml
13
 
14
 
@@ -18,9 +18,11 @@ class LearnedDownSample(nn.Module):
18
  self.layer_type = layer_type
19
 
20
  if self.layer_type == 'none':
21
- self.conv = nn.Identity()
 
22
  elif self.layer_type == 'timepreserve':
23
- self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
 
24
  elif self.layer_type == 'half':
25
  self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
26
  else:
@@ -48,20 +50,7 @@ class DownSample(nn.Module):
48
  raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
49
 
50
 
51
- class UpSample(nn.Module):
52
- def __init__(self, layer_type):
53
- super().__init__()
54
- self.layer_type = layer_type
55
 
56
- def forward(self, x):
57
- if self.layer_type == 'none':
58
- return x
59
- elif self.layer_type == 'timepreserve':
60
- return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
61
- elif self.layer_type == 'half':
62
- return F.interpolate(x, scale_factor=2, mode='nearest')
63
- else:
64
- raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
65
 
66
 
67
  class ResBlk(nn.Module):
@@ -137,9 +126,11 @@ class StyleEncoder(nn.Module):
137
  h = self.shared(x) # [bs, 512, 1, 11]
138
 
139
  h = h.mean(3, keepdims=True) # UN COMMENT FOR TIME INVARIANT GLOBAL SPEAKER STYLE
140
-
141
  h = h.transpose(1, 3)
142
  s = self.unshared(h)
 
 
143
  return s
144
 
145
 
@@ -249,114 +240,37 @@ class TextEncoder(nn.Module):
249
 
250
  self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
251
 
252
- def forward(self, x, input_lengths, m):
253
  x = self.embedding(x) # [B, T, emb]
254
  x = x.transpose(1, 2) # [B, emb, T]
255
- m = m.to(input_lengths.device).unsqueeze(1)
256
- x.masked_fill_(m, 0.0)
257
-
258
  for c in self.cnn:
259
- x = c(x)
260
- x.masked_fill_(m, 0.0)
261
-
262
  x = x.transpose(1, 2) # [B, T, chn]
263
-
264
  input_lengths = input_lengths.cpu().numpy()
265
  x = nn.utils.rnn.pack_padded_sequence(
266
- x, input_lengths, batch_first=True, enforce_sorted=False)
267
-
 
268
  self.lstm.flatten_parameters()
269
  x, _ = self.lstm(x)
270
  x, _ = nn.utils.rnn.pad_packed_sequence(
271
  x, batch_first=True)
272
-
273
  x = x.transpose(-1, -2)
274
- x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
275
-
276
- x_pad[:, :, :x.shape[-1]] = x
277
- x = x_pad.to(x.device)
278
-
279
- x.masked_fill_(m, 0.0)
280
-
281
  return x
282
 
283
- def inference(self, x):
284
- x = self.embedding(x)
285
- x = x.transpose(1, 2)
286
- x = self.cnn(x)
287
- x = x.transpose(1, 2)
288
- self.lstm.flatten_parameters()
289
- x, _ = self.lstm(x)
290
- return x
291
 
292
- def length_to_mask(self, lengths):
293
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
294
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
295
- return mask
296
-
297
- class UpSample1d(nn.Module):
298
- def __init__(self, layer_type):
299
- super().__init__()
300
- self.layer_type = layer_type
301
-
302
- def forward(self, x):
303
- if self.layer_type == 'none':
304
- return x
305
- else:
306
- return F.interpolate(x, scale_factor=2, mode='nearest')
307
-
308
- class AdainResBlk1d(nn.Module):
309
-
310
- # only instantiated in ProsodyPredictor
311
-
312
- def __init__(self, dim_in,
313
- dim_out,
314
- style_dim=64,
315
- actv=nn.LeakyReLU(0.2),
316
- upsample='none',
317
- dropout_p=0.0):
318
- super().__init__()
319
- self.actv = actv
320
- self.upsample_type = upsample
321
- self.upsample = UpSample1d(upsample)
322
- self.learned_sc = dim_in != dim_out
323
- self._build_weights(dim_in, dim_out, style_dim)
324
- self.dropout = nn.Dropout(dropout_p)
325
-
326
- if upsample == 'none':
327
- self.pool = nn.Identity()
328
- else:
329
- self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
330
-
331
-
332
- def _build_weights(self, dim_in, dim_out, style_dim):
333
- self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
334
- self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
335
- self.norm1 = AdaIN1d(style_dim, dim_in)
336
- self.norm2 = AdaIN1d(style_dim, dim_out)
337
- if self.learned_sc:
338
- self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
339
-
340
- def _shortcut(self, x):
341
- x = self.upsample(x)
342
- if self.learned_sc:
343
- x = self.conv1x1(x)
344
- return x
345
-
346
- def _residual(self, x, s):
347
- x = self.norm1(x, s)
348
- x = self.actv(x)
349
- x = self.pool(x)
350
- x = self.conv1(self.dropout(x))
351
- x = self.norm2(x, s)
352
- x = self.actv(x)
353
- x = self.conv2(self.dropout(x))
354
- return x
355
-
356
- def forward(self, x, s):
357
- out = self._residual(x, s)
358
- out = (out + self._shortcut(x)) / math.sqrt(2)
359
- return out
360
 
361
  class AdaLayerNorm(nn.Module):
362
 
@@ -423,11 +337,6 @@ class ProsodyPredictor(nn.Module):
423
 
424
  return F0.squeeze(1), N.squeeze(1)
425
 
426
- def length_to_mask(self, lengths):
427
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
428
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
429
- return mask
430
-
431
  class DurationEncoder(nn.Module):
432
 
433
  def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
@@ -447,21 +356,13 @@ class DurationEncoder(nn.Module):
447
  self.d_model = d_model
448
  self.sty_dim = sty_dim
449
 
450
- def forward(self, x, style, text_lengths, m):
451
- masks = m.to(text_lengths.device)
452
-
453
 
454
-
455
- # x : [bs, 512, 987]
456
- # print('DURATION ENCODER', x.shape, style.shape, masks.shape)
457
- # s = style.expand(x.shape[0], x.shape[1], -1)
458
  style = style[:, :, 0, :].transpose(2, 1) # [bs, 128, 11]
459
- # print("S IN DURATION ENC", style.shape, x.shape)
460
- style = F.interpolate(style, x.shape[2])
461
- print(f'L468 IN DURATION ENC {x.shape=}, {style.shape=} {masks.shape=}') # mask = [1,75]
462
  x = torch.cat([x, style], axis=1) # [bs, 640, 75]
463
- x.masked_fill_(masks[:, None, :], 0.0)
464
-
465
 
466
  input_lengths = text_lengths.cpu().numpy()
467
 
@@ -471,7 +372,7 @@ class DurationEncoder(nn.Module):
471
  print(f'\n=========ENTER ADALAYNORM L479 models.py {x.shape=}, {style.shape=}')
472
  x = block(x, style) # [bs, 75, 512]
473
  x = torch.cat([x.transpose(1, 2), style], axis=1) # [bs, 512, 75]
474
- x.masked_fill_(masks[:, None, :], 0.0)
475
  else:
476
  # print(f'{x.shape=} ENTER LSTM') # [bs, 640, 75] LSTM reduce ch 640 -> 512
477
  x = x.transpose(-1, -2)
@@ -483,15 +384,6 @@ class DurationEncoder(nn.Module):
483
  x, batch_first=True)
484
  x = F.dropout(x, p=self.dropout, training=self.training)
485
  x = x.transpose(-1, -2)
486
-
487
- x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
488
-
489
- x_pad[:, :, :x.shape[-1]] = x
490
- x = x_pad.to(x.device)
491
- # print(f'{x.shape=} EXIR LSTM') # [bs, 512, 75]
492
- # print('Calling Duration Encoder\n\n\n\n',x.shape, x.min(), x.max())
493
- # Calling Duration Encoder
494
- # torch.Size([1, 640, 107]) tensor(-3.0903, device='cuda:0') tensor(2.3089, device='cuda:0')
495
  return x.transpose(-1, -2)
496
 
497
 
 
8
  from torch.nn.utils import weight_norm, spectral_norm
9
  from Utils.ASR.models import ASRCNN
10
  from Utils.JDC.model import JDCNet
11
+ from Modules.hifigan import AdainResBlk1d
12
  import yaml
13
 
14
 
 
18
  self.layer_type = layer_type
19
 
20
  if self.layer_type == 'none':
21
+ raise ValueError
22
+ # self.conv = nn.Identity()
23
  elif self.layer_type == 'timepreserve':
24
+ raise ValueError
25
+ # self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
26
  elif self.layer_type == 'half':
27
  self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
28
  else:
 
50
  raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
51
 
52
 
 
 
 
 
53
 
 
 
 
 
 
 
 
 
 
54
 
55
 
56
  class ResBlk(nn.Module):
 
126
  h = self.shared(x) # [bs, 512, 1, 11]
127
 
128
  h = h.mean(3, keepdims=True) # UN COMMENT FOR TIME INVARIANT GLOBAL SPEAKER STYLE
129
+ # h = .7 * h + .25 * h.mean(3, keepdims=True)
130
  h = h.transpose(1, 3)
131
  s = self.unshared(h)
132
+
133
+
134
  return s
135
 
136
 
 
240
 
241
  self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
242
 
243
+ def forward(self, x, input_lengths):
244
  x = self.embedding(x) # [B, T, emb]
245
  x = x.transpose(1, 2) # [B, emb, T]
 
 
 
246
  for c in self.cnn:
247
+ x = c(x)
 
 
248
  x = x.transpose(1, 2) # [B, T, chn]
 
249
  input_lengths = input_lengths.cpu().numpy()
250
  x = nn.utils.rnn.pack_padded_sequence(
251
+ x, input_lengths,
252
+ batch_first=True,
253
+ enforce_sorted=False)
254
  self.lstm.flatten_parameters()
255
  x, _ = self.lstm(x)
256
  x, _ = nn.utils.rnn.pad_packed_sequence(
257
  x, batch_first=True)
 
258
  x = x.transpose(-1, -2)
 
 
 
 
 
 
 
259
  return x
260
 
261
+ # def inference(self, x):
262
+ # x = self.embedding(x)
263
+ # x = x.transpose(1, 2)
264
+ # x = self.cnn(x)
265
+ # x = x.transpose(1, 2)
266
+ # self.lstm.flatten_parameters()
267
+ # x, _ = self.lstm(x)
268
+ # return x
269
 
270
+ # def length_to_mask(self, lengths):
271
+ # mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
272
+ # mask = torch.gt(mask+1, lengths.unsqueeze(1))
273
+ # return mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
 
275
  class AdaLayerNorm(nn.Module):
276
 
 
337
 
338
  return F0.squeeze(1), N.squeeze(1)
339
 
 
 
 
 
 
340
  class DurationEncoder(nn.Module):
341
 
342
  def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
 
356
  self.d_model = d_model
357
  self.sty_dim = sty_dim
358
 
359
+ def forward(self, x, style, text_lengths):
 
 
360
 
 
 
 
 
361
  style = style[:, :, 0, :].transpose(2, 1) # [bs, 128, 11]
362
+
363
+ style = F.interpolate(style, x.shape[2], mode='nearest')
364
+
365
  x = torch.cat([x, style], axis=1) # [bs, 640, 75]
 
 
366
 
367
  input_lengths = text_lengths.cpu().numpy()
368
 
 
372
  print(f'\n=========ENTER ADALAYNORM L479 models.py {x.shape=}, {style.shape=}')
373
  x = block(x, style) # [bs, 75, 512]
374
  x = torch.cat([x.transpose(1, 2), style], axis=1) # [bs, 512, 75]
375
+
376
  else:
377
  # print(f'{x.shape=} ENTER LSTM') # [bs, 640, 75] LSTM reduce ch 640 -> 512
378
  x = x.transpose(-1, -2)
 
384
  x, batch_first=True)
385
  x = F.dropout(x, p=self.dropout, training=self.training)
386
  x = x.transpose(-1, -2)
 
 
 
 
 
 
 
 
 
387
  return x.transpose(-1, -2)
388
 
389
 
msinference.py CHANGED
@@ -51,23 +51,11 @@ to_mel = torchaudio.transforms.MelSpectrogram(
51
  n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
52
  mean, std = -4, 4
53
 
54
- # START UTIL
55
-
56
-
57
-
58
  def alpha_num(f):
59
  f = re.sub(' +', ' ', f) # delete spaces
60
  f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
61
  return f
62
 
63
-
64
- # ======== UTILS ABOVE
65
-
66
- def length_to_mask(lengths):
67
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
68
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
69
- return mask
70
-
71
  def preprocess(wave):
72
  wave_tensor = torch.from_numpy(wave).float()
73
  mel_tensor = to_mel(wave_tensor)
@@ -201,51 +189,31 @@ params = params_whole['net']
201
  # --
202
  from collections import OrderedDict
203
 
204
- new_state_dict = OrderedDict()
205
- for k, v in params['bert'].items():
206
- new_state_dict[k[7:]] = v # del 'module.'
207
- bert.load_state_dict(new_state_dict, strict=True)
208
- # --
209
- new_state_dict = OrderedDict()
210
- for k, v in params['bert_encoder'].items():
211
- new_state_dict[k[7:]] = v # del 'module.'
212
- bert_encoder.load_state_dict(new_state_dict, strict=True)
213
- # --
214
- new_state_dict = OrderedDict()
215
- for k, v in params['predictor'].items():
216
- new_state_dict[k[7:]] = v # del 'module.'
217
- predictor.load_state_dict(new_state_dict, strict=True) # XTRA non-ckpt LSTMs nlayers add slowiness to voice
218
- # --
219
- new_state_dict = OrderedDict()
220
- for k, v in params['decoder'].items():
221
- new_state_dict[k[7:]] = v
222
- decoder.load_state_dict(new_state_dict, strict=True)
223
- # --
224
- new_state_dict = OrderedDict()
225
- for k, v in params['text_encoder'].items():
226
- new_state_dict[k[7:]] = v
227
- text_encoder.load_state_dict(new_state_dict, strict=True)
228
- # --
229
- new_state_dict = OrderedDict()
230
- for k, v in params['predictor_encoder'].items():
231
- new_state_dict[k[7:]] = v
232
- predictor_encoder.load_state_dict(new_state_dict, strict=True)
233
- # --
234
- new_state_dict = OrderedDict()
235
- for k, v in params['style_encoder'].items():
236
- new_state_dict[k[7:]] = v
237
- style_encoder.load_state_dict(new_state_dict, strict=True)
238
- # --
239
- new_state_dict = OrderedDict()
240
- for k, v in params['text_aligner'].items():
241
- new_state_dict[k[7:]] = v # del 'module.'
242
- text_aligner.load_state_dict(new_state_dict, strict=True)
243
- # --
244
- new_state_dict = OrderedDict()
245
- for k, v in params['pitch_extractor'].items():
246
- new_state_dict[k[7:]] = v
247
- pitch_extractor.load_state_dict(new_state_dict, strict=True)
248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
 
250
  def inference(text,
251
  ref_s,
@@ -267,7 +235,7 @@ def inference(text,
267
 
268
  with torch.no_grad():
269
  input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
270
- text_mask = length_to_mask(input_lengths).to(device)
271
  # -----------------------
272
  # WHO TRANSLATES these tokens to sylla
273
  # print(text_mask.shape, '\n__\n', tokens, '\n__\n', text_mask.min(), text_mask.max())
@@ -282,13 +250,9 @@ def inference(text,
282
  # 54, 156, 63, 158, 147, 83, 56, 16, 4]], device='cuda:0')
283
 
284
 
285
- t_en = text_encoder(tokens, input_lengths, text_mask)
286
- bert_dur = bert(tokens, attention_mask=(~text_mask).int())
287
  d_en = bert_encoder(bert_dur).transpose(-1, -2)
288
- # print('BERTdu', bert_dur.shape, tokens.shape, '\n') # bert what is the 768 per token -> IS USED in sampler
289
- # BERTdu torch.Size([1, 11, 768]) torch.Size([1, 11])
290
-
291
-
292
 
293
  ref = ref_s[:, :, :, :128] # [bs, 11, 1, 128]
294
  s = ref_s[:, :, :, 128:] # have channels as last dim so it can go through nn.Linear layers
@@ -299,13 +263,13 @@ def inference(text,
299
  # s = .74 * s # prosody / arousal & fading unvoiced syllabes [x0.7 - x1.2]
300
 
301
 
302
- print(f'{d_en.shape=} {s.shape=} {input_lengths.shape=} {text_mask.shape=}')
303
  d = predictor.text_encoder(d_en,
304
  s,
305
- input_lengths,
306
- text_mask)
307
 
308
  x, _ = predictor.lstm(d)
 
309
  duration = predictor.duration_proj(x)
310
 
311
  duration = torch.sigmoid(duration).sum(axis=-1)
@@ -364,14 +328,12 @@ def inference(text,
364
  #
365
  # This source code is licensed under the MIT license found in the
366
  # LICENSE file in the root directory of this source tree.
367
-
368
  import os
369
  import re
370
  import tempfile
371
  import torch
372
  import sys
373
- import numpy as np
374
- import audiofile
375
  from huggingface_hub import hf_hub_download
376
 
377
  # Setup TTS env
@@ -393,8 +355,6 @@ with open(f"Utils/all_langs.csv") as f:
393
 
394
  # LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
395
  # ==============================================================================================
396
- import re
397
- from num2words import num2words
398
 
399
  PHONEME_MAP = {
400
  'služ' : 'sloooozz', # 'službeno'
 
51
  n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
52
  mean, std = -4, 4
53
 
 
 
 
 
54
  def alpha_num(f):
55
  f = re.sub(' +', ' ', f) # delete spaces
56
  f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
57
  return f
58
 
 
 
 
 
 
 
 
 
59
  def preprocess(wave):
60
  wave_tensor = torch.from_numpy(wave).float()
61
  mel_tensor = to_mel(wave_tensor)
 
189
  # --
190
  from collections import OrderedDict
191
 
192
+ def _del_prefix(d):
193
+ # del ".module"
194
+ out = OrderedDict()
195
+ for k, v in d.items():
196
+ out[k[7:]] = v
197
+ return out
198
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
200
+ bert.load_state_dict( _del_prefix(params['bert']), strict=True)
201
+ bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True)
202
+ predictor.load_state_dict( _del_prefix(params['predictor']), strict=True) # XTRA non-ckpt LSTMs nlayers add slowiness to voice
203
+ decoder.load_state_dict( _del_prefix(params['decoder']), strict=True)
204
+ text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True)
205
+ predictor_encoder.load_state_dict(_del_prefix(params['predictor_encoder']), strict=True)
206
+ style_encoder.load_state_dict(_del_prefix(params['style_encoder']), strict=True)
207
+ text_aligner.load_state_dict( _del_prefix(params['text_aligner']), strict=True)
208
+ pitch_extractor.load_state_dict(_del_prefix(params['pitch_extractor']), strict=True)
209
+
210
+ # def _shift(x):
211
+ # # [bs, samples] shift circular each batch elem of sound
212
+ # n = x.shape[1]
213
+ # for i, batch_elem in enumerate(x):
214
+ # offset = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD
215
+ # x[i, ...] = torch.roll(batch_elem, offset, dims=1) # batch_elem = [400000, ]
216
+ # return x
217
 
218
  def inference(text,
219
  ref_s,
 
235
 
236
  with torch.no_grad():
237
  input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
238
+
239
  # -----------------------
240
  # WHO TRANSLATES these tokens to sylla
241
  # print(text_mask.shape, '\n__\n', tokens, '\n__\n', text_mask.min(), text_mask.max())
 
250
  # 54, 156, 63, 158, 147, 83, 56, 16, 4]], device='cuda:0')
251
 
252
 
253
+ t_en = text_encoder(tokens, input_lengths)
254
+ bert_dur = bert(tokens, attention_mask=None)
255
  d_en = bert_encoder(bert_dur).transpose(-1, -2)
 
 
 
 
256
 
257
  ref = ref_s[:, :, :, :128] # [bs, 11, 1, 128]
258
  s = ref_s[:, :, :, 128:] # have channels as last dim so it can go through nn.Linear layers
 
263
  # s = .74 * s # prosody / arousal & fading unvoiced syllabes [x0.7 - x1.2]
264
 
265
 
266
+ print(f'{d_en.shape=} {s.shape=} {input_lengths.shape=}')
267
  d = predictor.text_encoder(d_en,
268
  s,
269
+ input_lengths)
 
270
 
271
  x, _ = predictor.lstm(d)
272
+ print(d.shape, x.shape, 'Lstm')
273
  duration = predictor.duration_proj(x)
274
 
275
  duration = torch.sigmoid(duration).sum(axis=-1)
 
328
  #
329
  # This source code is licensed under the MIT license found in the
330
  # LICENSE file in the root directory of this source tree.
331
+ from num2words import num2words
332
  import os
333
  import re
334
  import tempfile
335
  import torch
336
  import sys
 
 
337
  from huggingface_hub import hf_hub_download
338
 
339
  # Setup TTS env
 
355
 
356
  # LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
357
  # ==============================================================================================
 
 
358
 
359
  PHONEME_MAP = {
360
  'služ' : 'sloooozz', # 'službeno'