metadata
base_model: driaforall/mem-agent
library_name: mlx
pipeline_tag: text-generation
tags:
- mlx
driaforall/mem-agent-mlx-quant
This model driaforall/mem-agent-mlx-4bit was converted to MLX format from driaforall/mem-agent using mlx-lm version 0.25.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("driaforall/mem-agent-mlx-quant")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)