File size: 12,175 Bytes
ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c ffdd6fa 598f35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
data:
format: zarr
resolution: n320
frequency: 6h
timestep: 6h
forcing:
- cos_latitude
- cos_longitude
- sin_latitude
- sin_longitude
- cos_julian_day
- cos_local_time
- sin_julian_day
- sin_local_time
- insolation
- lsm
- sdor
- slor
- z
diagnostic:
- tp
- cp
- sf
- tcc
- hcc
- lcc
- mcc
- ro
- ssrd
- strd
- 100u
- 100v
remapped: null
normalizer:
default: mean-std
remap:
cp: tp
sf: tp
std:
- tp
- cp
- sf
- ro
- tcw
- ssrd
- q_50
- q_100
- q_150
- q_200
- q_250
- q_300
- q_400
- q_500
- q_600
- q_700
- q_850
- q_925
- q_1000
min-max: null
max:
- sdor
- slor
- z
none:
- cos_latitude
- cos_longitude
- sin_latitude
- sin_longitude
- cos_julian_day
- cos_local_time
- sin_julian_day
- sin_local_time
- insolation
- lsm
- tcc
- mcc
- hcc
- lcc
- swvl1
- swvl2
imputer:
default: none
minimum:
- swvl1
- swvl2
- ro
mean:
- stl1
- stl2
remapper:
default: none
processors:
imputer:
_target_: anemoi.models.preprocessing.imputer.InputImputer
_convert_: all
config: ${data.imputer}
normalizer:
_target_: anemoi.models.preprocessing.normalizer.InputNormalizer
config: ${data.normalizer}
num_features: null
dataloader:
prefetch_factor: 2
pin_memory: true
read_group_size: ${hardware.num_gpus_per_model}
num_workers:
training: 8
validation: 8
test: 1
predict: 1
batch_size:
training: 1
validation: 1
test: 4
predict: 4
limit_batches:
training: null
validation: null
test: 20
predict: 20
grid_indices:
_target_: anemoi.training.data.grid_indices.FullGrid
nodes_name: ${graph.data}
dataset: ${hardware.paths.data}/${hardware.files.dataset}
training:
dataset:
- dataset: ${hardware.paths.data}/${hardware.files.dataset}
start: null
end: 2022
frequency: ${data.frequency}
start: null
end: 2022
drop: []
validation:
dataset:
- dataset: ${hardware.paths.data}/${hardware.files.dataset}
start: 2022
end: 2024
frequency: ${data.frequency}
start: 2022
end: 2024
drop: []
test:
dataset:
- dataset: ${hardware.paths.data}/${hardware.files.dataset}
start: 2022
end: null
frequency: ${data.frequency}
start: 2022
end: null
drop: []
diagnostics:
plot:
asynchronous: true
datashader: true
frequency:
batch: 750
epoch: 5
parameters:
- z_500
- t_850
- u_850
- v_850
- 2t
- 10u
- 10v
- sp
- tp
- cp
sample_idx: 0
precip_and_related_fields:
- tp
- cp
colormaps:
default:
_target_: anemoi.training.utils.custom_colormaps.MatplotlibColormap
name: viridis
error:
_target_: anemoi.training.utils.custom_colormaps.MatplotlibColormap
name: bwr
precip:
_target_: anemoi.training.utils.custom_colormaps.MatplotlibColormapClevels
clevels:
- '#ffffff'
- '#04e9e7'
- '#019ff4'
- '#0300f4'
- '#02fd02'
- '#01c501'
- '#008e00'
- '#fdf802'
- '#e5bc00'
- '#fd9500'
- '#fd0000'
- '#d40000'
- '#bc0000'
- '#f800fd'
variables: ${diagnostics.plot.precip_and_related_fields}
callbacks: []
callbacks: []
benchmark_profiler:
memory:
enabled: true
steps: 5
warmup: 2
extra_plots: false
trace_rank0_only: false
time:
enabled: true
verbose: false
speed:
enabled: true
system:
enabled: true
model_summary:
enabled: true
snapshot:
enabled: true
steps: 4
warmup: 0
debug:
anomaly_detection: false
profiler: false
enable_checkpointing: true
checkpoint:
every_n_minutes:
save_frequency: 30
num_models_saved: 3
every_n_epochs:
save_frequency: 1
num_models_saved: -1
every_n_train_steps:
save_frequency: null
num_models_saved: 0
log:
wandb:
enabled: false
offline: false
log_model: false
project: Anemoi
entity: ???
gradients: false
parameters: false
tensorboard:
enabled: false
mlflow:
enabled: false
offline: false
authentication: false
log_model: false
tracking_uri: ???
experiment_name: ???
project_name: ???
system: true
terminal: true
run_name: null
on_resume_create_child: true
expand_hyperparams:
- config
http_max_retries: 35
interval: 100
enable_progress_bar: true
print_memory_summary: false
hardware:
paths:
data: ${oc.decode:${oc.env:DATASETS_PATH}}
output: ${oc.decode:${oc.env:OUTPUT_PATH}}
logs:
base: ${hardware.paths.output}logs/
wandb: ${hardware.paths.logs.base}
mlflow: ${hardware.paths.logs.base}mlflow/
tensorboard: ${hardware.paths.logs.base}tensorboard/
checkpoints: ${hardware.paths.output}checkpoint/
plots: ${hardware.paths.output}plots/
profiler: ${hardware.paths.output}profiler/
graph: ${hardware.paths.output}graphs/
files:
dataset: aifs-ea-an-oper-0001-mars-${data.resolution}-1979-2024-6h-v1-aifs-single-v1.zarr
graph: graph_enc_proc_dec_${data.resolution}.pt
truncation: null
truncation_inv: null
checkpoint:
every_n_epochs: aifs-by_epoch-epoch_{epoch:03d}-val_wmse_{val_wmse:.3e}
every_n_train_steps: aifs-by_step-epoch_{epoch:03d}-step_{step:06d}
every_n_minutes: aifs-by_time-epoch_{epoch:03d}-step_{step:06d}
warm_start: null
accelerator: auto
num_gpus_per_node: 4
num_nodes: 16
num_gpus_per_model: 4
graph:
overwrite: true
data: data
hidden: hidden
nodes:
data:
node_builder:
_target_: anemoi.graphs.nodes.ZarrDatasetNodes
dataset: ${dataloader.dataset}
attributes: ${graph.attributes.nodes}
hidden:
node_builder:
_target_: anemoi.graphs.nodes.ReducedGaussianGridNodes
grid: o96
edges:
- source_name: ${graph.data}
target_name: ${graph.hidden}
edge_builders:
- _target_: anemoi.graphs.edges.CutOffEdges
cutoff_factor: 0.6
source_mask_attr_name: null
target_mask_attr_name: null
attributes: ${graph.attributes.edges}
- source_name: ${graph.hidden}
target_name: ${graph.data}
edge_builders:
- _target_: anemoi.graphs.edges.KNNEdges
num_nearest_neighbours: 3
source_mask_attr_name: null
target_mask_attr_name: null
attributes: ${graph.attributes.edges}
attributes:
nodes:
area_weight:
_target_: anemoi.graphs.nodes.attributes.SphericalAreaWeights
norm: unit-max
fill_value: 0
edges:
edge_length:
_target_: anemoi.graphs.edges.attributes.EdgeLength
norm: unit-std
edge_dirs:
_target_: anemoi.graphs.edges.attributes.EdgeDirection
norm: unit-std
post_processors: []
model:
activation: GELU
num_channels: 1024
cpu_offload: false
output_mask: null
model:
_target_: anemoi.models.models.encoder_processor_decoder.AnemoiModelEncProcDec
layer_kernels:
processor:
LayerNorm:
_target_: torch.nn.LayerNorm
_partial_: true
Linear:
_target_: torch.nn.Linear
_partial_: true
QueryNorm:
_target_: anemoi.models.layers.normalization.AutocastLayerNorm
_partial_: true
bias: false
KeyNorm:
_target_: anemoi.models.layers.normalization.AutocastLayerNorm
_partial_: true
bias: false
encoder:
LayerNorm:
_target_: torch.nn.LayerNorm
_partial_: true
Linear:
_target_: torch.nn.Linear
_partial_: true
decoder:
LayerNorm:
_target_: torch.nn.LayerNorm
_partial_: true
Linear:
_target_: torch.nn.Linear
_partial_: true
processor:
_target_: anemoi.models.layers.processor.TransformerProcessor
activation: ${model.activation}
num_layers: 16
num_chunks: 2
mlp_hidden_ratio: 4
num_heads: 16
window_size: 1120
dropout_p: 0.0
attention_implementation: flash_attention
qk_norm: false
softcap: 0.0
use_alibi_slopes: false
cpu_offload: ${model.cpu_offload}
encoder:
_target_: anemoi.models.layers.mapper.GraphTransformerForwardMapper
trainable_size: ${model.trainable_parameters.data2hidden}
sub_graph_edge_attributes: ${model.attributes.edges}
activation: ${model.activation}
num_chunks: 1
mlp_hidden_ratio: 4
num_heads: 16
qk_norm: false
cpu_offload: ${model.cpu_offload}
decoder:
_target_: anemoi.models.layers.mapper.GraphTransformerBackwardMapper
trainable_size: ${model.trainable_parameters.hidden2data}
sub_graph_edge_attributes: ${model.attributes.edges}
activation: ${model.activation}
num_chunks: 1
mlp_hidden_ratio: 4
num_heads: 16
initialise_data_extractor_zero: false
qk_norm: false
cpu_offload: ${model.cpu_offload}
trainable_parameters:
data: 8
hidden: 8
data2hidden: 8
hidden2data: 8
attributes:
edges:
- edge_length
- edge_dirs
nodes: []
bounding:
- _target_: anemoi.models.layers.bounding.ReluBounding
variables:
- tp
- ro
- tcw
- ssrd
- ro
- q_50
- q_100
- q_150
- q_200
- q_250
- q_300
- q_400
- q_500
- q_600
- q_700
- q_850
- q_925
- q_1000
- _target_: anemoi.models.layers.bounding.HardtanhBounding
variables:
- tcc
- swvl1
- swvl2
min_val: 0
max_val: 1
- _target_: anemoi.models.layers.bounding.FractionBounding
variables:
- cp
- sf
min_val: 0
max_val: 1
total_var: tp
- _target_: anemoi.models.layers.bounding.FractionBounding
variables:
- lcc
- mcc
- hcc
min_val: 0
max_val: 1
total_var: tcc
training:
run_id: null
fork_run_id: null
transfer_learning: false
load_weights_only: false
deterministic: false
precision: 16-mixed
multistep_input: 2
accum_grad_batches: 1
num_sanity_val_steps: 6
gradient_clip:
val: 32.0
algorithm: value
swa:
enabled: false
lr: 0.0001
optimizer:
zero: false
kwargs:
betas:
- 0.9
- 0.95
model_task: anemoi.training.train.forecaster.GraphForecaster
strategy:
_target_: anemoi.training.distributed.strategy.DDPGroupStrategy
num_gpus_per_model: ${hardware.num_gpus_per_model}
read_group_size: ${dataloader.read_group_size}
loss_gradient_scaling: false
training_loss:
_target_: anemoi.training.losses.mse.WeightedMSELoss
scalars:
- variable
- loss_weights_mask
ignore_nans: false
validation_metrics:
- _target_: anemoi.training.losses.mse.WeightedMSELoss
scalars: []
ignore_nans: true
scale_validation_metrics:
scalars_to_apply:
- variable
metrics:
- all
rollout:
start: 1
epoch_increment: 0
max: 1
max_epochs: null
max_steps: 260000
lr:
warmup: 1000
rate: 3.125e-05
iterations: 260000
min: 3.0e-07
variable_loss_scaling:
default: 1
pl:
q: 0.6
t: 6
u: 0.8
v: 0.5
w: 0.001
z: 12
sfc:
sp: 10
10u: 0.5
10v: 0.5
100u: 0.1
100v: 0.1
2d: 0.5
tp: 0.025
cp: 0.0025
ro: 0.0025
sf: 0.025
tcc: 0.1
mcc: 0.1
lcc: 0.1
hcc: 0.1
swvl2: 2
swvl1: 1
stl2: 10
stl1: 1
ssrd: 0.05
strd: 0.1
metrics:
- z_500
- t_850
- u_850
- v_850
pressure_level_scaler:
_target_: anemoi.training.data.scaling.ReluPressureLevelScaler
minimum: 0.2
slope: 0.001
node_loss_weights:
_target_: anemoi.training.losses.nodeweights.GraphNodeAttribute
target_nodes: ${graph.data}
node_attribute: area_weight
submodules_to_freeze: []
|