Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -1,23 +1,22 @@ 
     | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
             
            tags:
         
     | 
| 3 | 
         
            -
            - autotrain
         
     | 
| 4 | 
         
             
            - text-generation-inference
         
     | 
| 5 | 
         
             
            - text-generation
         
     | 
| 6 | 
         
             
            - peft
         
     | 
| 7 | 
         
             
            library_name: transformers
         
     | 
| 8 | 
         
             
            base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
         
     | 
| 9 | 
         
             
            widget:
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
             
            license: other
         
     | 
| 14 | 
         
             
            datasets:
         
     | 
| 15 | 
         
             
            - emre/lima_dirty_tr
         
     | 
| 16 | 
         
             
            ---
         
     | 
| 17 | 
         | 
| 18 | 
         
            -
            #  
     | 
| 19 | 
         | 
| 20 | 
         
            -
             
     | 
| 21 | 
         | 
| 22 | 
         
             
            # Usage
         
     | 
| 23 | 
         | 
| 
         @@ -25,7 +24,7 @@ This model was trained using AutoTrain. For more information, please visit [Auto 
     | 
|
| 25 | 
         | 
| 26 | 
         
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         
     | 
| 27 | 
         | 
| 28 | 
         
            -
            model_path = " 
     | 
| 29 | 
         | 
| 30 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(model_path)
         
     | 
| 31 | 
         
             
            model = AutoModelForCausalLM.from_pretrained(
         
     | 
| 
         | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
             
            tags:
         
     | 
| 
         | 
|
| 3 | 
         
             
            - text-generation-inference
         
     | 
| 4 | 
         
             
            - text-generation
         
     | 
| 5 | 
         
             
            - peft
         
     | 
| 6 | 
         
             
            library_name: transformers
         
     | 
| 7 | 
         
             
            base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
         
     | 
| 8 | 
         
             
            widget:
         
     | 
| 9 | 
         
            +
            - messages:
         
     | 
| 10 | 
         
            +
              - role: user
         
     | 
| 11 | 
         
            +
                content: What is your favorite condiment?
         
     | 
| 12 | 
         
             
            license: other
         
     | 
| 13 | 
         
             
            datasets:
         
     | 
| 14 | 
         
             
            - emre/lima_dirty_tr
         
     | 
| 15 | 
         
             
            ---
         
     | 
| 16 | 
         | 
| 17 | 
         
            +
            # Vocabulary adjustment needed
         
     | 
| 18 | 
         | 
| 19 | 
         
            +
            deepseek-ai/DeepSeek-R1-Distill-Qwen-14B model is fine tuned with Lora therefore vocab size does not match, adjust it accordingly before using. 
         
     | 
| 20 | 
         | 
| 21 | 
         
             
            # Usage
         
     | 
| 22 | 
         | 
| 
         | 
|
| 24 | 
         | 
| 25 | 
         
             
            from transformers import AutoModelForCausalLM, AutoTokenizer
         
     | 
| 26 | 
         | 
| 27 | 
         
            +
            model_path = "emre/DeepSeek-R1-Qwen-14B-tr-ORPO"
         
     | 
| 28 | 
         | 
| 29 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(model_path)
         
     | 
| 30 | 
         
             
            model = AutoModelForCausalLM.from_pretrained(
         
     |