File size: 11,384 Bytes
9b0a5af b46a961 6bffdd8 688d28c 9b0a5af 3d5a24c 9b0a5af 2ab62e6 9b0a5af 3d5a24c 9b0a5af 3d5a24c 4befcb0 9b0a5af 3d5a24c 9b0a5af 3d5a24c 9b0a5af 3d5a24c 9b0a5af 3d5a24c 9b0a5af 3d5a24c 9b0a5af 3d5a24c 9b0a5af 3d5a24c 9b0a5af 3d5a24c 9b0a5af 6bffdd8 9b0a5af 1625315 3d5a24c 1625315 3d5a24c 1625315 3d5a24c 9b0a5af 3d5a24c 51a3016 6bffdd8 3e0b17d 6bffdd8 3d5a24c 3c2c61f 3d5a24c 1727d4c 3d5a24c 1727d4c 3d5a24c 6bffdd8 3d5a24c 6bffdd8 5ae1a45 6bffdd8 3d5a24c 1625315 6bffdd8 1625315 6bffdd8 1625315 6bffdd8 1625315 5ae1a45 1625315 3d5a24c 0dd3240 22c1f87 0dd3240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import subprocess
import torch
# if torch.cuda.is_available():
# process = subprocess.Popen(['pip', 'uninstall', 'onnxruntime'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# stdout, stderr = process.communicate()
# process = subprocess.Popen(['pip', 'install', '--force-reinstall', 'onnxruntime-gpu'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# stdout, stderr = process.communicate()
import whisperx
import os, gc
import time
import json
import base64
import numpy as np
DEVNULL = open(os.devnull, "w")
# from transformers.pipelines.audio_utils import ffmpeg_read
from typing import Dict, List, Any
import logging
logger = logging.getLogger(__name__)
SAMPLE_RATE = 16000
def whisper_config():
device = "cuda" if torch.cuda.is_available() else "cpu"
whisper_model = "large-v3"
batch_size = 48 if device == "cuda" else 1
compute_type = "float16" if device == "cuda" else "int8"
return device, batch_size, compute_type, whisper_model
# From https://gist.github.com/kylemcdonald/85d70bf53e207bab3775
# load_audio can not detect the input type
def ffmpeg_load_audio(filename, sr=44100, mono=False, normalize=True, in_type=np.int16, out_type=np.float32):
channels = 1 if mono else 2
format_strings = {
np.float64: "f64le",
np.float32: "f32le",
np.int16: "s16le",
np.int32: "s32le",
np.uint32: "u32le",
}
format_string = format_strings[in_type]
command = [
"ffmpeg",
"-i",
filename,
"-f",
format_string,
"-acodec",
"pcm_" + format_string,
"-ar",
str(sr),
"-ac",
str(channels),
"-",
]
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=DEVNULL, bufsize=4096)
bytes_per_sample = np.dtype(in_type).itemsize
frame_size = bytes_per_sample * channels
chunk_size = frame_size * sr # read in 1-second chunks
raw = b""
with p.stdout as stdout:
while True:
data = stdout.read(chunk_size)
if data:
raw += data
else:
break
audio = np.fromstring(raw, dtype=in_type).astype(out_type)
if channels > 1:
audio = audio.reshape((-1, channels)).transpose()
if audio.size == 0:
return audio, sr
if issubclass(out_type, np.floating):
if normalize:
peak = np.abs(audio).max()
if peak > 0:
audio /= peak
elif issubclass(in_type, np.integer):
audio /= np.iinfo(in_type).max
return audio
# FROM HuggingFace
def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
"""
Helper function to read an audio file through ffmpeg.
"""
ar = f"{sampling_rate}"
ac = "1"
format_for_conversion = "f32le"
ffmpeg_command = [
"ffmpeg",
"-i",
"pipe:0",
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
try:
with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process:
output_stream = ffmpeg_process.communicate(bpayload)
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error
out_bytes = output_stream[0]
audio = np.frombuffer(out_bytes, np.float32)
if audio.shape[0] == 0:
raise ValueError(
"Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has "
"a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote "
"URL, ensure that the URL is the full address to **download** the audio file."
)
return audio
# FROM whisperX
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
try:
# Launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI to be installed.
cmd = [
"ffmpeg",
"-nostdin",
"-threads",
"0",
"-i",
file,
"-f",
"s16le",
"-ac",
"1",
"-acodec",
"pcm_s16le",
"-ar",
str(sr),
"-",
]
out = subprocess.run(cmd, capture_output=True, check=True).stdout
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def display_gpu_infos():
if not torch.cuda.is_available():
return "NO CUDA"
infos = "torch.cuda.current_device(): " + str(torch.cuda.current_device()) + ", "
infos = infos + "torch.cuda.device(0): " + str(torch.cuda.device(0)) + ", "
infos = infos + "torch.cuda.device_count(): " + str(torch.cuda.device_count()) + ", "
infos = infos + "torch.cuda.get_device_name(0): " + str(torch.cuda.get_device_name(0))
return infos
class EndpointHandler:
def __init__(self, path=""):
# load the model
device, batch_size, compute_type, whisper_model = whisper_config()
self.model = whisperx.load_model(whisper_model, device=device, compute_type=compute_type, language="fr")
# 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 ERIC
# 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 OLD
# logger.info(f"Model {whisper_model} initialized")
self.diarize_model = whisperx.DiarizationPipeline(
"pyannote/speaker-diarization-3.1", use_auth_token="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", device=device
)
logger.info(f"Model for diarization initialized")
def __call__(self, data: Any) -> Dict[str, str]:
"""
Args:
data (:obj:):
includes the deserialized audio file as bytes
Return:
A :obj:`dict`:. base64 encoded image
"""
# get the start time
st = time.time()
logger.info("--------------- CONFIGURATION ------------------------")
device, batch_size, compute_type, whisper_model = whisper_config()
logger.info(display_gpu_infos())
# 1. process input
parameters = data.pop("parameters", None)
options = data.pop("options", None)
# OPTIONS are given as parameters
info = options.get("info", False)
transcribe = options.get("transcription", False)
alignment = options.get("alignment", False)
diarization = options.get("diarization", False)
language = parameters.get("language", "fr")
min_speakers = parameters.get("min_speakers", 2)
max_speakers = parameters.get("max_speakers", 25)
# for diarization without transcription, the transcription is given as input, so data is now a tuple (inputs, transcription)
if transcribe:
inputs_encoded = data.pop("inputs", data)
elif diarization:
inputs_encoded, transcription = data.pop("inputs", data)
inputs = base64.b64decode(inputs_encoded)
logger.info(f"inputs decoded.")
# make a tmp file
with open("/tmp/myfile.tmp", "wb") as w:
w.write(inputs)
logger.info(f"inputs saved.")
audio_nparray = load_audio("/tmp/myfile.tmp", sr=SAMPLE_RATE)
logger.info(f"inputs loaded as mono 16kHz.")
# clean up
os.remove("/tmp/myfile.tmp")
logger.info(f"temp file removed.")
et = time.time()
elapsed_time = et - st
logger.info(f"TIME for audio processing : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for audio processing : {elapsed_time:.2f} seconds")
# 2. transcribe
if transcribe:
gc.collect()
torch.cuda.empty_cache()
logger.info("--------------- STARTING TRANSCRIPTION ------------------------")
transcription = self.model.transcribe(audio_nparray, batch_size=batch_size, language=language)
if info:
print(transcription["segments"][0:10_000]) # before alignment
else:
logger.info(transcription["segments"][0:1_000])
try:
first_text = transcription["segments"][0]["text"]
except:
logger.warning("No transcription")
return {"transcription": transcription["segments"]}
et = time.time()
elapsed_time = et - st
st = time.time()
logger.info(f"TIME for audio transcription : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for audio transcription : {elapsed_time:.2f} seconds")
# 3. align
if alignment:
gc.collect()
torch.cuda.empty_cache()
logger.info("--------------- STARTING ALIGNMENT ------------------------")
model_a, metadata = whisperx.load_align_model(language_code=transcription["language"], device=device)
transcription = whisperx.align(
transcription["segments"], model_a, metadata, audio_nparray, device, return_char_alignments=False
)
del model_a
if info:
print(transcription["segments"][0:10000])
else:
logger.info(transcription["segments"][0:1_000])
et = time.time()
elapsed_time = et - st
st = time.time()
logger.info(f"TIME for alignment : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for alignment : {elapsed_time:.2f} seconds")
# 4. Assign speaker labels
if diarization:
gc.collect()
torch.cuda.empty_cache()
logger.info("--------------- STARTING DIARIZATION ------------------------")
if not transcription:
logger.warning("No transcription to diarize")
# add min/max number of speakers if known
diarize_segments = self.diarize_model(audio_nparray, min_speakers=min_speakers, max_speakers=max_speakers)
if info:
print(diarize_segments)
else:
logger.info(diarize_segments)
transcription = whisperx.assign_word_speakers(diarize_segments, transcription)
et = time.time()
elapsed_time = et - st
st = time.time()
logger.info(f"TIME for audio diarization : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for audio diarization : {elapsed_time:.2f} seconds")
# results_json = json.dumps(results)
# return {"results": results_json}
# return {"transcription": [s["text"] for s in transcription["segments"]]}
gc.collect()
torch.cuda.empty_cache()
return transcription
|