File size: 2,789 Bytes
2ba3bb9 bf5e05e 2ba3bb9 9d87942 07e8cbe 9d87942 41d7126 5fbb6a4 07e8cbe 4a51a70 07e8cbe 4a51a70 07e8cbe 9d87942 5fbb6a4 9d87942 d6ce41b 9d87942 9e06c72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: mit
datasets:
- flwrlabs/code-alpaca-20k
language:
- en
metrics:
- accuracy
base_model:
- Qwen/Qwen2.5-Coder-0.5B-Instruct
pipeline_tag: text-generation
library_name: peft
tags:
- text-generation-inference
- code
---
# Model Card for FlowerTune-Qwen2.5-Coder-0.5B-Instruct-PEFT

## Evaluation Results (Accuracy)
- **MBPP**: 25.60 %
- **HumanEval**: 37.81 %
- **MultiPL-E (JS)**: 41.00 %
- **MultiPL-E (C++)**: 32.92 %
- **Average**: 34.34 %
## Model Details
This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework.
The adapter and benchmark results have been submitted to the [FlowerTune LLM Code Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/code/).
Please check the following GitHub project for details on how to reproduce training and evaluation steps:
[https://github.com/ethicalabs-ai/FlowerTune-Qwen2.5-Coder-0.5B-Instruct/](https://github.com/ethicalabs-ai/FlowerTune-Qwen2.5-Coder-0.5B-Instruct/)
## How to Get Started with the Model
Use this model as:
```
from peft import PeftModel
from transformers import AutoModelForCausalLM
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-0.5B-Instruct")
model = PeftModel.from_pretrained(base_model, "ethicalabs/FlowerTune-Qwen2.5-Coder-0.5B-Instruct")
```
## Communication Budget
8766.51 MB Megabytes
## Virtual Machine Details
For this experiment, I utilized [CUDO Compute](https://www.cudocompute.com/?via=flowertune-llm) as the GPU compute provider.
| **Component** | **Specification** |
|---------------|----------------------|
| **GPU** | 1 × RTX A4000 16 GB |
| **vCPUs** | 4 |
| **CPU** | AMD EPYC (Milan) |
| **Memory** | 16 GB |
## Cost Breakdown
### Compute Costs
| **Component** | **Details** | **Cost/hr** |
|---------------|---------------|-------------|
| vCPUs | 4 cores | $0.0088/hr |
| Memory | 16 GB | $0.056/hr |
| GPU | 1 × RTX A4000 | $0.25/hr |
### Storage Costs
| **Component** | **Details** | **Cost/hr** |
|------------------|-------------|-------------|
| Boot Disk Size | 70 GB | $0.0077/hr |
### Network Costs
| **Component** | **Details** | **Cost/hr** |
|-----------------------|-------------|-------------|
| Public IPv4 Address | N/A | $0.005/hr |
### Total Cost
| **Total Cost/hr** |
|-------------------|
| **$0.3275/hr** |
### Simulation Details
| **Parameter** | **Value** |
|--------------------|------------------------|
| **Runtime** | 1924.52 seconds (00:32:04) |
| **Simulation Cost**| **$0.18** |
### Framework versions
- PEFT 0.14.0
- Flower 1.13.1 |