--- datasets: - eurecom-ds/multi_dsprites library_name: diffusers pipeline_tag: unconditional-image-generation --- ```python # !pip install diffusers from diffusers import DiffusionPipeline import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "eurecom-ds/scoresdeve-ema-multi-dsprites-64" # load model and scheduler pipe = DiffusionPipeline.from_pretrained(model_id, trust_remote_code=True) pipe.to(device) # run pipeline in inference (sample random noise and denoise) generator = torch.Generator(device=device).manual_seed(46) image = pipe( generator=generator, batch_size=1, num_inference_steps=1000 ).images # save image image[0].save("sde_ve_generated_image.png") ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62c88e75a5ac2974c0a5c8ea/kvPScDwIZaJRf0KDt5jNF.png)