# /// script # dependencies = [ # "trl>=0.12.0", # "peft>=0.7.0", # "transformers>=4.36.0", # "accelerate>=0.24.0", # "trackio", # ] # /// import trackio from datasets import load_dataset from peft import LoraConfig from trl import SFTTrainer, SFTConfig # Initialize Trackio for real-time monitoring trackio.init( project="qwen-demo-sft", space_id="evalstate/demo-trackio-dashboard", config={ "model": "Qwen/Qwen2.5-0.5B", "dataset": "trl-lib/Capybara", "examples": 50, "max_steps": 20, "note": "Quick demo training" } ) # Load dataset (only 50 examples for quick demo) dataset = load_dataset("trl-lib/Capybara", split="train[:50]") print(f"✅ Dataset loaded: {len(dataset)} examples") # Training configuration config = SFTConfig( # Hub settings - CRITICAL for saving results output_dir="qwen-demo-sft", push_to_hub=True, hub_model_id="evalstate/qwen-demo-sft", # Quick training settings max_steps=20, # Very short for demo per_device_train_batch_size=2, gradient_accumulation_steps=2, learning_rate=2e-5, # Logging logging_steps=5, save_strategy="steps", save_steps=10, # Monitoring report_to="trackio", ) # LoRA configuration (memory efficient) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], ) # Initialize and train trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, args=config, peft_config=peft_config, ) print("🚀 Starting demo training...") trainer.train() print("💾 Pushing to Hub...") trainer.push_to_hub() # Finish Trackio tracking trackio.finish() print("✅ Demo complete!") print(f"📦 Model: https://huggingface.co/evalstate/qwen-demo-sft") print(f"📊 Metrics: https://huggingface.co/spaces/evalstate/demo-trackio-dashboard")