Add pipeline tag and hyperlink paper in model card (#1)
Browse files- Add pipeline tag and hyperlink paper in model card (6c5c3ea916ed0ad92bad444fdb4144282826e18c)
Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
---
|
|
|
|
|
2 |
language:
|
3 |
- en
|
4 |
library_name: transformers
|
|
|
|
|
5 |
tags:
|
6 |
- reasoning
|
7 |
- reinforcement-learning
|
@@ -9,67 +13,30 @@ tags:
|
|
9 |
- mcts
|
10 |
- math
|
11 |
- iclr-2026
|
12 |
-
license: apache-2.0
|
13 |
-
datasets:
|
14 |
-
- DeepMath-103K
|
15 |
model-index:
|
16 |
- name: DeepSearch-1.5B
|
17 |
results:
|
18 |
- task:
|
19 |
-
name: Mathematical Reasoning
|
20 |
type: text-generation
|
|
|
21 |
dataset:
|
22 |
name: AIME 2024
|
23 |
type: text
|
24 |
metrics:
|
25 |
- type: avg@32
|
26 |
value: 53.65
|
27 |
-
- task:
|
28 |
-
name: Mathematical Reasoning
|
29 |
-
type: text-generation
|
30 |
-
dataset:
|
31 |
-
name: AIME 2025
|
32 |
-
type: text
|
33 |
-
metrics:
|
34 |
- type: avg@32
|
35 |
value: 35.42
|
36 |
-
- task:
|
37 |
-
name: Mathematical Reasoning
|
38 |
-
type: text-generation
|
39 |
-
dataset:
|
40 |
-
name: AMC 2023
|
41 |
-
type: text
|
42 |
-
metrics:
|
43 |
- type: avg@32
|
44 |
value: 90.39
|
45 |
-
- task:
|
46 |
-
name: Mathematical Reasoning
|
47 |
-
type: text-generation
|
48 |
-
dataset:
|
49 |
-
name: MATH500
|
50 |
-
type: text
|
51 |
-
metrics:
|
52 |
- type: avg@32
|
53 |
value: 92.53
|
54 |
-
- task:
|
55 |
-
name: Mathematical Reasoning
|
56 |
-
type: text-generation
|
57 |
-
dataset:
|
58 |
-
name: Minerva
|
59 |
-
type: text
|
60 |
-
metrics:
|
61 |
- type: avg@32
|
62 |
-
value: 40.
|
63 |
-
- task:
|
64 |
-
name: Mathematical Reasoning
|
65 |
-
type: text-generation
|
66 |
-
dataset:
|
67 |
-
name: Olympiad
|
68 |
-
type: text
|
69 |
-
metrics:
|
70 |
- type: avg@32
|
71 |
value: 65.72
|
72 |
---
|
|
|
73 |
<div align="center">
|
74 |
<span style="font-family: default; font-size: 1.5em;">🚀 DeepSearch-1.5B</span>
|
75 |
</div>
|
@@ -88,7 +55,7 @@ This model achieves **state-of-the-art accuracy among 1.5B reasoning models** wh
|
|
88 |
|
89 |
- **Developed by**: Fang Wu\*, Weihao Xuan\*, Heli Qi\*, Ximing Lu, Aaron Tu, Li Erran Li, Yejin Choi
|
90 |
- **Institutional affiliations**: Stanford University, University of Tokyo, RIKEN AIP, University of Washington, UC Berkeley, Amazon AWS, Columbia University
|
91 |
-
- **Paper**: DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
|
92 |
- **Base Model**: Nemotron-Research-Reasoning-Qwen-1.5B v2
|
93 |
- **Parameters**: 1.5B
|
94 |
- **Framework**: veRL
|
@@ -114,7 +81,8 @@ from transformers import AutoTokenizer
|
|
114 |
def convert_question_to_messages(question: str):
|
115 |
messages = [
|
116 |
{"role": "user",
|
117 |
-
"content": question + " Let's think step by step and output the final answer within \\boxed{}.
|
|
|
118 |
]
|
119 |
return messages
|
120 |
|
@@ -155,7 +123,7 @@ print(response)
|
|
155 |
| Olympiad | 64.69 | **65.72** |
|
156 |
| **Average** | 61.70 | **62.95** |
|
157 |
|
158 |
-
DeepSearch improves average accuracy by **+1.25 points** over the best prior 1.5B model, while using **5.7×
|
159 |
|
160 |
|
161 |
## Training
|
@@ -191,3 +159,4 @@ DeepSearch improves average accuracy by **+1.25 points** over the best prior 1.5
|
|
191 |
primaryClass = {cs.AI},
|
192 |
doi = {10.48550/arXiv.2509.25454},
|
193 |
}
|
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- DeepMath-103K
|
4 |
language:
|
5 |
- en
|
6 |
library_name: transformers
|
7 |
+
license: apache-2.0
|
8 |
+
pipeline_tag: text-generation
|
9 |
tags:
|
10 |
- reasoning
|
11 |
- reinforcement-learning
|
|
|
13 |
- mcts
|
14 |
- math
|
15 |
- iclr-2026
|
|
|
|
|
|
|
16 |
model-index:
|
17 |
- name: DeepSearch-1.5B
|
18 |
results:
|
19 |
- task:
|
|
|
20 |
type: text-generation
|
21 |
+
name: Mathematical Reasoning
|
22 |
dataset:
|
23 |
name: AIME 2024
|
24 |
type: text
|
25 |
metrics:
|
26 |
- type: avg@32
|
27 |
value: 53.65
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
- type: avg@32
|
29 |
value: 35.42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
- type: avg@32
|
31 |
value: 90.39
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
- type: avg@32
|
33 |
value: 92.53
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
- type: avg@32
|
35 |
+
value: 40.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
- type: avg@32
|
37 |
value: 65.72
|
38 |
---
|
39 |
+
|
40 |
<div align="center">
|
41 |
<span style="font-family: default; font-size: 1.5em;">🚀 DeepSearch-1.5B</span>
|
42 |
</div>
|
|
|
55 |
|
56 |
- **Developed by**: Fang Wu\*, Weihao Xuan\*, Heli Qi\*, Ximing Lu, Aaron Tu, Li Erran Li, Yejin Choi
|
57 |
- **Institutional affiliations**: Stanford University, University of Tokyo, RIKEN AIP, University of Washington, UC Berkeley, Amazon AWS, Columbia University
|
58 |
+
- **Paper**: [DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search](https://huggingface.co/papers/2509.25454)
|
59 |
- **Base Model**: Nemotron-Research-Reasoning-Qwen-1.5B v2
|
60 |
- **Parameters**: 1.5B
|
61 |
- **Framework**: veRL
|
|
|
81 |
def convert_question_to_messages(question: str):
|
82 |
messages = [
|
83 |
{"role": "user",
|
84 |
+
"content": question + " Let's think step by step and output the final answer within \\boxed{}. \
|
85 |
+
"}
|
86 |
]
|
87 |
return messages
|
88 |
|
|
|
123 |
| Olympiad | 64.69 | **65.72** |
|
124 |
| **Average** | 61.70 | **62.95** |
|
125 |
|
126 |
+
DeepSearch improves average accuracy by **+1.25 points** over the best prior 1.5B model, while using **5.7× more GPU hours**.
|
127 |
|
128 |
|
129 |
## Training
|
|
|
159 |
primaryClass = {cs.AI},
|
160 |
doi = {10.48550/arXiv.2509.25454},
|
161 |
}
|
162 |
+
```
|