Push model using huggingface_hub.
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +433 -0
- config.json +25 -0
- config_sentence_transformers.json +14 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            tokenizer.json filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            unigram.json filter=lfs diff=lfs merge=lfs -text
         | 
    	
        1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "word_embedding_dimension": 384,
         | 
| 3 | 
            +
                "pooling_mode_cls_token": false,
         | 
| 4 | 
            +
                "pooling_mode_mean_tokens": true,
         | 
| 5 | 
            +
                "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
                "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            +
                "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            +
                "pooling_mode_lasttoken": false,
         | 
| 9 | 
            +
                "include_prompt": true
         | 
| 10 | 
            +
            }
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,433 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - setfit
         | 
| 4 | 
            +
            - sentence-transformers
         | 
| 5 | 
            +
            - text-classification
         | 
| 6 | 
            +
            - generated_from_setfit_trainer
         | 
| 7 | 
            +
            widget:
         | 
| 8 | 
            +
            - text: Emergency insurance payouts complement humanitarian assistance by providing
         | 
| 9 | 
            +
                timely financial resources that facilitate quicker recovery from climate disasters.
         | 
| 10 | 
            +
            - text: "c) Establish strategic and operational partnerships and alliances with private,\
         | 
| 11 | 
            +
                \ public and civil society \norganizations in food and nutrition."
         | 
| 12 | 
            +
            - text: 'COVID-19: The Development Program for Drinking Water Supply and Sanitation
         | 
| 13 | 
            +
                Systems of the Kyrgyz Republic until 2026 was approved.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
                The Program is aimed at increasing the provision of drinking water of standard
         | 
| 17 | 
            +
                quality, improving the health and quality of life of the population of the republic,
         | 
| 18 | 
            +
                reducing the harmful effects on the environment through the construction, reconstruction,
         | 
| 19 | 
            +
                and modernization of drinking water supply and sanitation systems.'
         | 
| 20 | 
            +
            - text: "The program mainly aims at \nthe construction of rural roads, capacity building\
         | 
| 21 | 
            +
                \ of local bodies, and \nawareness raising activities."
         | 
| 22 | 
            +
            - text: "Mr. Speaker, the PF Government \n\nremains committed to ensuring that all\
         | 
| 23 | 
            +
                \ \n\nZambians have access to clean water supply \n\nand sanitation services."
         | 
| 24 | 
            +
            metrics:
         | 
| 25 | 
            +
            - accuracy
         | 
| 26 | 
            +
            pipeline_tag: text-classification
         | 
| 27 | 
            +
            library_name: setfit
         | 
| 28 | 
            +
            inference: false
         | 
| 29 | 
            +
            base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
         | 
| 30 | 
            +
            ---
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            The model has been trained using an efficient few-shot learning technique that involves:
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
         | 
| 39 | 
            +
            2. Training a classification head with features from the fine-tuned Sentence Transformer.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            ## Model Details
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            ### Model Description
         | 
| 44 | 
            +
            - **Model Type:** SetFit
         | 
| 45 | 
            +
            - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
         | 
| 46 | 
            +
            - **Classification head:** a MultiOutputClassifier instance
         | 
| 47 | 
            +
            - **Maximum Sequence Length:** 128 tokens
         | 
| 48 | 
            +
            <!-- - **Number of Classes:** Unknown -->
         | 
| 49 | 
            +
            <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
         | 
| 50 | 
            +
            <!-- - **Language:** Unknown -->
         | 
| 51 | 
            +
            <!-- - **License:** Unknown -->
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            ### Model Sources
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
         | 
| 56 | 
            +
            - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
         | 
| 57 | 
            +
            - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            ## Uses
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            ### Direct Use for Inference
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            First install the SetFit library:
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            ```bash
         | 
| 66 | 
            +
            pip install setfit
         | 
| 67 | 
            +
            ```
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            Then you can load this model and run inference.
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            ```python
         | 
| 72 | 
            +
            from setfit import SetFitModel
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            # Download from the 🤗 Hub
         | 
| 75 | 
            +
            model = SetFitModel.from_pretrained("faodl/20250909_model_g20_multilabel_MiniLM-L12-all-labels-artificial-governance-multi-output")
         | 
| 76 | 
            +
            # Run inference
         | 
| 77 | 
            +
            preds = model("The program mainly aims at 
         | 
| 78 | 
            +
            the construction of rural roads, capacity building of local bodies, and 
         | 
| 79 | 
            +
            awareness raising activities.")
         | 
| 80 | 
            +
            ```
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            <!--
         | 
| 83 | 
            +
            ### Downstream Use
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            *List how someone could finetune this model on their own dataset.*
         | 
| 86 | 
            +
            -->
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            <!--
         | 
| 89 | 
            +
            ### Out-of-Scope Use
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 92 | 
            +
            -->
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            <!--
         | 
| 95 | 
            +
            ## Bias, Risks and Limitations
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 98 | 
            +
            -->
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            <!--
         | 
| 101 | 
            +
            ### Recommendations
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 104 | 
            +
            -->
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            ## Training Details
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            ### Training Set Metrics
         | 
| 109 | 
            +
            | Training set | Min | Median  | Max  |
         | 
| 110 | 
            +
            |:-------------|:----|:--------|:-----|
         | 
| 111 | 
            +
            | Word count   | 1   | 41.6795 | 1753 |
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            ### Training Hyperparameters
         | 
| 114 | 
            +
            - batch_size: (32, 32)
         | 
| 115 | 
            +
            - num_epochs: (1, 1)
         | 
| 116 | 
            +
            - max_steps: -1
         | 
| 117 | 
            +
            - sampling_strategy: oversampling
         | 
| 118 | 
            +
            - num_iterations: 50
         | 
| 119 | 
            +
            - body_learning_rate: (2e-05, 2e-05)
         | 
| 120 | 
            +
            - head_learning_rate: 2e-05
         | 
| 121 | 
            +
            - loss: CosineSimilarityLoss
         | 
| 122 | 
            +
            - distance_metric: cosine_distance
         | 
| 123 | 
            +
            - margin: 0.25
         | 
| 124 | 
            +
            - end_to_end: False
         | 
| 125 | 
            +
            - use_amp: False
         | 
| 126 | 
            +
            - warmup_proportion: 0.1
         | 
| 127 | 
            +
            - l2_weight: 0.01
         | 
| 128 | 
            +
            - seed: 42
         | 
| 129 | 
            +
            - eval_max_steps: -1
         | 
| 130 | 
            +
            - load_best_model_at_end: False
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            ### Training Results
         | 
| 133 | 
            +
            | Epoch  | Step  | Training Loss | Validation Loss |
         | 
| 134 | 
            +
            |:------:|:-----:|:-------------:|:---------------:|
         | 
| 135 | 
            +
            | 0.0001 | 1     | 0.184         | -               |
         | 
| 136 | 
            +
            | 0.0039 | 50    | 0.1927        | -               |
         | 
| 137 | 
            +
            | 0.0078 | 100   | 0.1729        | -               |
         | 
| 138 | 
            +
            | 0.0117 | 150   | 0.1484        | -               |
         | 
| 139 | 
            +
            | 0.0156 | 200   | 0.1301        | -               |
         | 
| 140 | 
            +
            | 0.0196 | 250   | 0.1134        | -               |
         | 
| 141 | 
            +
            | 0.0235 | 300   | 0.1079        | -               |
         | 
| 142 | 
            +
            | 0.0274 | 350   | 0.1021        | -               |
         | 
| 143 | 
            +
            | 0.0313 | 400   | 0.0876        | -               |
         | 
| 144 | 
            +
            | 0.0352 | 450   | 0.0834        | -               |
         | 
| 145 | 
            +
            | 0.0391 | 500   | 0.0886        | -               |
         | 
| 146 | 
            +
            | 0.0430 | 550   | 0.0728        | -               |
         | 
| 147 | 
            +
            | 0.0469 | 600   | 0.0775        | -               |
         | 
| 148 | 
            +
            | 0.0508 | 650   | 0.0811        | -               |
         | 
| 149 | 
            +
            | 0.0548 | 700   | 0.0745        | -               |
         | 
| 150 | 
            +
            | 0.0587 | 750   | 0.0753        | -               |
         | 
| 151 | 
            +
            | 0.0626 | 800   | 0.0745        | -               |
         | 
| 152 | 
            +
            | 0.0665 | 850   | 0.07          | -               |
         | 
| 153 | 
            +
            | 0.0704 | 900   | 0.0702        | -               |
         | 
| 154 | 
            +
            | 0.0743 | 950   | 0.0707        | -               |
         | 
| 155 | 
            +
            | 0.0782 | 1000  | 0.0702        | -               |
         | 
| 156 | 
            +
            | 0.0821 | 1050  | 0.0607        | -               |
         | 
| 157 | 
            +
            | 0.0860 | 1100  | 0.067         | -               |
         | 
| 158 | 
            +
            | 0.0899 | 1150  | 0.065         | -               |
         | 
| 159 | 
            +
            | 0.0939 | 1200  | 0.0659        | -               |
         | 
| 160 | 
            +
            | 0.0978 | 1250  | 0.066         | -               |
         | 
| 161 | 
            +
            | 0.1017 | 1300  | 0.066         | -               |
         | 
| 162 | 
            +
            | 0.1056 | 1350  | 0.06          | -               |
         | 
| 163 | 
            +
            | 0.1095 | 1400  | 0.0609        | -               |
         | 
| 164 | 
            +
            | 0.1134 | 1450  | 0.0587        | -               |
         | 
| 165 | 
            +
            | 0.1173 | 1500  | 0.0542        | -               |
         | 
| 166 | 
            +
            | 0.1212 | 1550  | 0.0523        | -               |
         | 
| 167 | 
            +
            | 0.1251 | 1600  | 0.0559        | -               |
         | 
| 168 | 
            +
            | 0.1291 | 1650  | 0.052         | -               |
         | 
| 169 | 
            +
            | 0.1330 | 1700  | 0.0487        | -               |
         | 
| 170 | 
            +
            | 0.1369 | 1750  | 0.053         | -               |
         | 
| 171 | 
            +
            | 0.1408 | 1800  | 0.0477        | -               |
         | 
| 172 | 
            +
            | 0.1447 | 1850  | 0.0492        | -               |
         | 
| 173 | 
            +
            | 0.1486 | 1900  | 0.0474        | -               |
         | 
| 174 | 
            +
            | 0.1525 | 1950  | 0.0488        | -               |
         | 
| 175 | 
            +
            | 0.1564 | 2000  | 0.0461        | -               |
         | 
| 176 | 
            +
            | 0.1603 | 2050  | 0.0481        | -               |
         | 
| 177 | 
            +
            | 0.1643 | 2100  | 0.0463        | -               |
         | 
| 178 | 
            +
            | 0.1682 | 2150  | 0.0432        | -               |
         | 
| 179 | 
            +
            | 0.1721 | 2200  | 0.0482        | -               |
         | 
| 180 | 
            +
            | 0.1760 | 2250  | 0.0444        | -               |
         | 
| 181 | 
            +
            | 0.1799 | 2300  | 0.0466        | -               |
         | 
| 182 | 
            +
            | 0.1838 | 2350  | 0.0423        | -               |
         | 
| 183 | 
            +
            | 0.1877 | 2400  | 0.041         | -               |
         | 
| 184 | 
            +
            | 0.1916 | 2450  | 0.0422        | -               |
         | 
| 185 | 
            +
            | 0.1955 | 2500  | 0.0401        | -               |
         | 
| 186 | 
            +
            | 0.1995 | 2550  | 0.0405        | -               |
         | 
| 187 | 
            +
            | 0.2034 | 2600  | 0.0448        | -               |
         | 
| 188 | 
            +
            | 0.2073 | 2650  | 0.0387        | -               |
         | 
| 189 | 
            +
            | 0.2112 | 2700  | 0.0371        | -               |
         | 
| 190 | 
            +
            | 0.2151 | 2750  | 0.0429        | -               |
         | 
| 191 | 
            +
            | 0.2190 | 2800  | 0.0379        | -               |
         | 
| 192 | 
            +
            | 0.2229 | 2850  | 0.0384        | -               |
         | 
| 193 | 
            +
            | 0.2268 | 2900  | 0.0378        | -               |
         | 
| 194 | 
            +
            | 0.2307 | 2950  | 0.0392        | -               |
         | 
| 195 | 
            +
            | 0.2346 | 3000  | 0.038         | -               |
         | 
| 196 | 
            +
            | 0.2386 | 3050  | 0.0325        | -               |
         | 
| 197 | 
            +
            | 0.2425 | 3100  | 0.0345        | -               |
         | 
| 198 | 
            +
            | 0.2464 | 3150  | 0.0341        | -               |
         | 
| 199 | 
            +
            | 0.2503 | 3200  | 0.0415        | -               |
         | 
| 200 | 
            +
            | 0.2542 | 3250  | 0.0313        | -               |
         | 
| 201 | 
            +
            | 0.2581 | 3300  | 0.0355        | -               |
         | 
| 202 | 
            +
            | 0.2620 | 3350  | 0.033         | -               |
         | 
| 203 | 
            +
            | 0.2659 | 3400  | 0.0308        | -               |
         | 
| 204 | 
            +
            | 0.2698 | 3450  | 0.0343        | -               |
         | 
| 205 | 
            +
            | 0.2738 | 3500  | 0.0379        | -               |
         | 
| 206 | 
            +
            | 0.2777 | 3550  | 0.032         | -               |
         | 
| 207 | 
            +
            | 0.2816 | 3600  | 0.0358        | -               |
         | 
| 208 | 
            +
            | 0.2855 | 3650  | 0.0334        | -               |
         | 
| 209 | 
            +
            | 0.2894 | 3700  | 0.0312        | -               |
         | 
| 210 | 
            +
            | 0.2933 | 3750  | 0.0336        | -               |
         | 
| 211 | 
            +
            | 0.2972 | 3800  | 0.0291        | -               |
         | 
| 212 | 
            +
            | 0.3011 | 3850  | 0.0268        | -               |
         | 
| 213 | 
            +
            | 0.3050 | 3900  | 0.034         | -               |
         | 
| 214 | 
            +
            | 0.3090 | 3950  | 0.0337        | -               |
         | 
| 215 | 
            +
            | 0.3129 | 4000  | 0.0266        | -               |
         | 
| 216 | 
            +
            | 0.3168 | 4050  | 0.0269        | -               |
         | 
| 217 | 
            +
            | 0.3207 | 4100  | 0.0326        | -               |
         | 
| 218 | 
            +
            | 0.3246 | 4150  | 0.0317        | -               |
         | 
| 219 | 
            +
            | 0.3285 | 4200  | 0.0271        | -               |
         | 
| 220 | 
            +
            | 0.3324 | 4250  | 0.0313        | -               |
         | 
| 221 | 
            +
            | 0.3363 | 4300  | 0.0263        | -               |
         | 
| 222 | 
            +
            | 0.3402 | 4350  | 0.0267        | -               |
         | 
| 223 | 
            +
            | 0.3442 | 4400  | 0.0273        | -               |
         | 
| 224 | 
            +
            | 0.3481 | 4450  | 0.026         | -               |
         | 
| 225 | 
            +
            | 0.3520 | 4500  | 0.0252        | -               |
         | 
| 226 | 
            +
            | 0.3559 | 4550  | 0.0261        | -               |
         | 
| 227 | 
            +
            | 0.3598 | 4600  | 0.0243        | -               |
         | 
| 228 | 
            +
            | 0.3637 | 4650  | 0.0252        | -               |
         | 
| 229 | 
            +
            | 0.3676 | 4700  | 0.0291        | -               |
         | 
| 230 | 
            +
            | 0.3715 | 4750  | 0.0286        | -               |
         | 
| 231 | 
            +
            | 0.3754 | 4800  | 0.0245        | -               |
         | 
| 232 | 
            +
            | 0.3794 | 4850  | 0.0263        | -               |
         | 
| 233 | 
            +
            | 0.3833 | 4900  | 0.0249        | -               |
         | 
| 234 | 
            +
            | 0.3872 | 4950  | 0.0209        | -               |
         | 
| 235 | 
            +
            | 0.3911 | 5000  | 0.0245        | -               |
         | 
| 236 | 
            +
            | 0.3950 | 5050  | 0.0278        | -               |
         | 
| 237 | 
            +
            | 0.3989 | 5100  | 0.0277        | -               |
         | 
| 238 | 
            +
            | 0.4028 | 5150  | 0.0266        | -               |
         | 
| 239 | 
            +
            | 0.4067 | 5200  | 0.0249        | -               |
         | 
| 240 | 
            +
            | 0.4106 | 5250  | 0.0279        | -               |
         | 
| 241 | 
            +
            | 0.4145 | 5300  | 0.027         | -               |
         | 
| 242 | 
            +
            | 0.4185 | 5350  | 0.0283        | -               |
         | 
| 243 | 
            +
            | 0.4224 | 5400  | 0.022         | -               |
         | 
| 244 | 
            +
            | 0.4263 | 5450  | 0.0232        | -               |
         | 
| 245 | 
            +
            | 0.4302 | 5500  | 0.0198        | -               |
         | 
| 246 | 
            +
            | 0.4341 | 5550  | 0.0254        | -               |
         | 
| 247 | 
            +
            | 0.4380 | 5600  | 0.0186        | -               |
         | 
| 248 | 
            +
            | 0.4419 | 5650  | 0.0237        | -               |
         | 
| 249 | 
            +
            | 0.4458 | 5700  | 0.0249        | -               |
         | 
| 250 | 
            +
            | 0.4497 | 5750  | 0.0241        | -               |
         | 
| 251 | 
            +
            | 0.4537 | 5800  | 0.0239        | -               |
         | 
| 252 | 
            +
            | 0.4576 | 5850  | 0.0258        | -               |
         | 
| 253 | 
            +
            | 0.4615 | 5900  | 0.0212        | -               |
         | 
| 254 | 
            +
            | 0.4654 | 5950  | 0.0208        | -               |
         | 
| 255 | 
            +
            | 0.4693 | 6000  | 0.0227        | -               |
         | 
| 256 | 
            +
            | 0.4732 | 6050  | 0.0262        | -               |
         | 
| 257 | 
            +
            | 0.4771 | 6100  | 0.0257        | -               |
         | 
| 258 | 
            +
            | 0.4810 | 6150  | 0.0227        | -               |
         | 
| 259 | 
            +
            | 0.4849 | 6200  | 0.0226        | -               |
         | 
| 260 | 
            +
            | 0.4889 | 6250  | 0.0231        | -               |
         | 
| 261 | 
            +
            | 0.4928 | 6300  | 0.0255        | -               |
         | 
| 262 | 
            +
            | 0.4967 | 6350  | 0.0199        | -               |
         | 
| 263 | 
            +
            | 0.5006 | 6400  | 0.022         | -               |
         | 
| 264 | 
            +
            | 0.5045 | 6450  | 0.0253        | -               |
         | 
| 265 | 
            +
            | 0.5084 | 6500  | 0.0209        | -               |
         | 
| 266 | 
            +
            | 0.5123 | 6550  | 0.0207        | -               |
         | 
| 267 | 
            +
            | 0.5162 | 6600  | 0.0215        | -               |
         | 
| 268 | 
            +
            | 0.5201 | 6650  | 0.0225        | -               |
         | 
| 269 | 
            +
            | 0.5241 | 6700  | 0.0185        | -               |
         | 
| 270 | 
            +
            | 0.5280 | 6750  | 0.019         | -               |
         | 
| 271 | 
            +
            | 0.5319 | 6800  | 0.0214        | -               |
         | 
| 272 | 
            +
            | 0.5358 | 6850  | 0.0252        | -               |
         | 
| 273 | 
            +
            | 0.5397 | 6900  | 0.0216        | -               |
         | 
| 274 | 
            +
            | 0.5436 | 6950  | 0.0205        | -               |
         | 
| 275 | 
            +
            | 0.5475 | 7000  | 0.0205        | -               |
         | 
| 276 | 
            +
            | 0.5514 | 7050  | 0.0244        | -               |
         | 
| 277 | 
            +
            | 0.5553 | 7100  | 0.0223        | -               |
         | 
| 278 | 
            +
            | 0.5592 | 7150  | 0.0181        | -               |
         | 
| 279 | 
            +
            | 0.5632 | 7200  | 0.0199        | -               |
         | 
| 280 | 
            +
            | 0.5671 | 7250  | 0.0217        | -               |
         | 
| 281 | 
            +
            | 0.5710 | 7300  | 0.0198        | -               |
         | 
| 282 | 
            +
            | 0.5749 | 7350  | 0.0224        | -               |
         | 
| 283 | 
            +
            | 0.5788 | 7400  | 0.0234        | -               |
         | 
| 284 | 
            +
            | 0.5827 | 7450  | 0.0193        | -               |
         | 
| 285 | 
            +
            | 0.5866 | 7500  | 0.0168        | -               |
         | 
| 286 | 
            +
            | 0.5905 | 7550  | 0.0193        | -               |
         | 
| 287 | 
            +
            | 0.5944 | 7600  | 0.0232        | -               |
         | 
| 288 | 
            +
            | 0.5984 | 7650  | 0.0183        | -               |
         | 
| 289 | 
            +
            | 0.6023 | 7700  | 0.0255        | -               |
         | 
| 290 | 
            +
            | 0.6062 | 7750  | 0.0209        | -               |
         | 
| 291 | 
            +
            | 0.6101 | 7800  | 0.0262        | -               |
         | 
| 292 | 
            +
            | 0.6140 | 7850  | 0.0228        | -               |
         | 
| 293 | 
            +
            | 0.6179 | 7900  | 0.0208        | -               |
         | 
| 294 | 
            +
            | 0.6218 | 7950  | 0.0167        | -               |
         | 
| 295 | 
            +
            | 0.6257 | 8000  | 0.0217        | -               |
         | 
| 296 | 
            +
            | 0.6296 | 8050  | 0.0175        | -               |
         | 
| 297 | 
            +
            | 0.6336 | 8100  | 0.0196        | -               |
         | 
| 298 | 
            +
            | 0.6375 | 8150  | 0.0215        | -               |
         | 
| 299 | 
            +
            | 0.6414 | 8200  | 0.0186        | -               |
         | 
| 300 | 
            +
            | 0.6453 | 8250  | 0.0181        | -               |
         | 
| 301 | 
            +
            | 0.6492 | 8300  | 0.0171        | -               |
         | 
| 302 | 
            +
            | 0.6531 | 8350  | 0.0224        | -               |
         | 
| 303 | 
            +
            | 0.6570 | 8400  | 0.0214        | -               |
         | 
| 304 | 
            +
            | 0.6609 | 8450  | 0.0214        | -               |
         | 
| 305 | 
            +
            | 0.6648 | 8500  | 0.0192        | -               |
         | 
| 306 | 
            +
            | 0.6688 | 8550  | 0.0213        | -               |
         | 
| 307 | 
            +
            | 0.6727 | 8600  | 0.0185        | -               |
         | 
| 308 | 
            +
            | 0.6766 | 8650  | 0.02          | -               |
         | 
| 309 | 
            +
            | 0.6805 | 8700  | 0.0218        | -               |
         | 
| 310 | 
            +
            | 0.6844 | 8750  | 0.0163        | -               |
         | 
| 311 | 
            +
            | 0.6883 | 8800  | 0.0183        | -               |
         | 
| 312 | 
            +
            | 0.6922 | 8850  | 0.0177        | -               |
         | 
| 313 | 
            +
            | 0.6961 | 8900  | 0.0178        | -               |
         | 
| 314 | 
            +
            | 0.7000 | 8950  | 0.0157        | -               |
         | 
| 315 | 
            +
            | 0.7039 | 9000  | 0.0201        | -               |
         | 
| 316 | 
            +
            | 0.7079 | 9050  | 0.017         | -               |
         | 
| 317 | 
            +
            | 0.7118 | 9100  | 0.0198        | -               |
         | 
| 318 | 
            +
            | 0.7157 | 9150  | 0.0196        | -               |
         | 
| 319 | 
            +
            | 0.7196 | 9200  | 0.0189        | -               |
         | 
| 320 | 
            +
            | 0.7235 | 9250  | 0.018         | -               |
         | 
| 321 | 
            +
            | 0.7274 | 9300  | 0.0193        | -               |
         | 
| 322 | 
            +
            | 0.7313 | 9350  | 0.0179        | -               |
         | 
| 323 | 
            +
            | 0.7352 | 9400  | 0.0218        | -               |
         | 
| 324 | 
            +
            | 0.7391 | 9450  | 0.0186        | -               |
         | 
| 325 | 
            +
            | 0.7431 | 9500  | 0.0175        | -               |
         | 
| 326 | 
            +
            | 0.7470 | 9550  | 0.0168        | -               |
         | 
| 327 | 
            +
            | 0.7509 | 9600  | 0.0193        | -               |
         | 
| 328 | 
            +
            | 0.7548 | 9650  | 0.0183        | -               |
         | 
| 329 | 
            +
            | 0.7587 | 9700  | 0.0168        | -               |
         | 
| 330 | 
            +
            | 0.7626 | 9750  | 0.0194        | -               |
         | 
| 331 | 
            +
            | 0.7665 | 9800  | 0.021         | -               |
         | 
| 332 | 
            +
            | 0.7704 | 9850  | 0.0178        | -               |
         | 
| 333 | 
            +
            | 0.7743 | 9900  | 0.018         | -               |
         | 
| 334 | 
            +
            | 0.7783 | 9950  | 0.0171        | -               |
         | 
| 335 | 
            +
            | 0.7822 | 10000 | 0.0191        | -               |
         | 
| 336 | 
            +
            | 0.7861 | 10050 | 0.0147        | -               |
         | 
| 337 | 
            +
            | 0.7900 | 10100 | 0.0193        | -               |
         | 
| 338 | 
            +
            | 0.7939 | 10150 | 0.0174        | -               |
         | 
| 339 | 
            +
            | 0.7978 | 10200 | 0.0171        | -               |
         | 
| 340 | 
            +
            | 0.8017 | 10250 | 0.0156        | -               |
         | 
| 341 | 
            +
            | 0.8056 | 10300 | 0.0176        | -               |
         | 
| 342 | 
            +
            | 0.8095 | 10350 | 0.0195        | -               |
         | 
| 343 | 
            +
            | 0.8135 | 10400 | 0.0151        | -               |
         | 
| 344 | 
            +
            | 0.8174 | 10450 | 0.0192        | -               |
         | 
| 345 | 
            +
            | 0.8213 | 10500 | 0.0201        | -               |
         | 
| 346 | 
            +
            | 0.8252 | 10550 | 0.0192        | -               |
         | 
| 347 | 
            +
            | 0.8291 | 10600 | 0.015         | -               |
         | 
| 348 | 
            +
            | 0.8330 | 10650 | 0.0181        | -               |
         | 
| 349 | 
            +
            | 0.8369 | 10700 | 0.0143        | -               |
         | 
| 350 | 
            +
            | 0.8408 | 10750 | 0.0177        | -               |
         | 
| 351 | 
            +
            | 0.8447 | 10800 | 0.015         | -               |
         | 
| 352 | 
            +
            | 0.8487 | 10850 | 0.0193        | -               |
         | 
| 353 | 
            +
            | 0.8526 | 10900 | 0.0168        | -               |
         | 
| 354 | 
            +
            | 0.8565 | 10950 | 0.0169        | -               |
         | 
| 355 | 
            +
            | 0.8604 | 11000 | 0.0166        | -               |
         | 
| 356 | 
            +
            | 0.8643 | 11050 | 0.0148        | -               |
         | 
| 357 | 
            +
            | 0.8682 | 11100 | 0.0163        | -               |
         | 
| 358 | 
            +
            | 0.8721 | 11150 | 0.0189        | -               |
         | 
| 359 | 
            +
            | 0.8760 | 11200 | 0.0197        | -               |
         | 
| 360 | 
            +
            | 0.8799 | 11250 | 0.0138        | -               |
         | 
| 361 | 
            +
            | 0.8838 | 11300 | 0.0168        | -               |
         | 
| 362 | 
            +
            | 0.8878 | 11350 | 0.0153        | -               |
         | 
| 363 | 
            +
            | 0.8917 | 11400 | 0.0147        | -               |
         | 
| 364 | 
            +
            | 0.8956 | 11450 | 0.0178        | -               |
         | 
| 365 | 
            +
            | 0.8995 | 11500 | 0.0184        | -               |
         | 
| 366 | 
            +
            | 0.9034 | 11550 | 0.0158        | -               |
         | 
| 367 | 
            +
            | 0.9073 | 11600 | 0.0183        | -               |
         | 
| 368 | 
            +
            | 0.9112 | 11650 | 0.0127        | -               |
         | 
| 369 | 
            +
            | 0.9151 | 11700 | 0.0169        | -               |
         | 
| 370 | 
            +
            | 0.9190 | 11750 | 0.018         | -               |
         | 
| 371 | 
            +
            | 0.9230 | 11800 | 0.0156        | -               |
         | 
| 372 | 
            +
            | 0.9269 | 11850 | 0.0156        | -               |
         | 
| 373 | 
            +
            | 0.9308 | 11900 | 0.0162        | -               |
         | 
| 374 | 
            +
            | 0.9347 | 11950 | 0.0124        | -               |
         | 
| 375 | 
            +
            | 0.9386 | 12000 | 0.0175        | -               |
         | 
| 376 | 
            +
            | 0.9425 | 12050 | 0.0179        | -               |
         | 
| 377 | 
            +
            | 0.9464 | 12100 | 0.0182        | -               |
         | 
| 378 | 
            +
            | 0.9503 | 12150 | 0.0176        | -               |
         | 
| 379 | 
            +
            | 0.9542 | 12200 | 0.0182        | -               |
         | 
| 380 | 
            +
            | 0.9582 | 12250 | 0.0189        | -               |
         | 
| 381 | 
            +
            | 0.9621 | 12300 | 0.0125        | -               |
         | 
| 382 | 
            +
            | 0.9660 | 12350 | 0.0176        | -               |
         | 
| 383 | 
            +
            | 0.9699 | 12400 | 0.0143        | -               |
         | 
| 384 | 
            +
            | 0.9738 | 12450 | 0.0162        | -               |
         | 
| 385 | 
            +
            | 0.9777 | 12500 | 0.017         | -               |
         | 
| 386 | 
            +
            | 0.9816 | 12550 | 0.0196        | -               |
         | 
| 387 | 
            +
            | 0.9855 | 12600 | 0.0192        | -               |
         | 
| 388 | 
            +
            | 0.9894 | 12650 | 0.0184        | -               |
         | 
| 389 | 
            +
            | 0.9934 | 12700 | 0.0149        | -               |
         | 
| 390 | 
            +
            | 0.9973 | 12750 | 0.0172        | -               |
         | 
| 391 | 
            +
             | 
| 392 | 
            +
            ### Framework Versions
         | 
| 393 | 
            +
            - Python: 3.12.11
         | 
| 394 | 
            +
            - SetFit: 1.1.3
         | 
| 395 | 
            +
            - Sentence Transformers: 5.1.0
         | 
| 396 | 
            +
            - Transformers: 4.56.1
         | 
| 397 | 
            +
            - PyTorch: 2.8.0+cu126
         | 
| 398 | 
            +
            - Datasets: 4.0.0
         | 
| 399 | 
            +
            - Tokenizers: 0.22.0
         | 
| 400 | 
            +
             | 
| 401 | 
            +
            ## Citation
         | 
| 402 | 
            +
             | 
| 403 | 
            +
            ### BibTeX
         | 
| 404 | 
            +
            ```bibtex
         | 
| 405 | 
            +
            @article{https://doi.org/10.48550/arxiv.2209.11055,
         | 
| 406 | 
            +
                doi = {10.48550/ARXIV.2209.11055},
         | 
| 407 | 
            +
                url = {https://arxiv.org/abs/2209.11055},
         | 
| 408 | 
            +
                author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
         | 
| 409 | 
            +
                keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
         | 
| 410 | 
            +
                title = {Efficient Few-Shot Learning Without Prompts},
         | 
| 411 | 
            +
                publisher = {arXiv},
         | 
| 412 | 
            +
                year = {2022},
         | 
| 413 | 
            +
                copyright = {Creative Commons Attribution 4.0 International}
         | 
| 414 | 
            +
            }
         | 
| 415 | 
            +
            ```
         | 
| 416 | 
            +
             | 
| 417 | 
            +
            <!--
         | 
| 418 | 
            +
            ## Glossary
         | 
| 419 | 
            +
             | 
| 420 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 421 | 
            +
            -->
         | 
| 422 | 
            +
             | 
| 423 | 
            +
            <!--
         | 
| 424 | 
            +
            ## Model Card Authors
         | 
| 425 | 
            +
             | 
| 426 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 427 | 
            +
            -->
         | 
| 428 | 
            +
             | 
| 429 | 
            +
            <!--
         | 
| 430 | 
            +
            ## Model Card Contact
         | 
| 431 | 
            +
             | 
| 432 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 433 | 
            +
            -->
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,25 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "BertModel"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 6 | 
            +
              "classifier_dropout": null,
         | 
| 7 | 
            +
              "dtype": "float32",
         | 
| 8 | 
            +
              "gradient_checkpointing": false,
         | 
| 9 | 
            +
              "hidden_act": "gelu",
         | 
| 10 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 11 | 
            +
              "hidden_size": 384,
         | 
| 12 | 
            +
              "initializer_range": 0.02,
         | 
| 13 | 
            +
              "intermediate_size": 1536,
         | 
| 14 | 
            +
              "layer_norm_eps": 1e-12,
         | 
| 15 | 
            +
              "max_position_embeddings": 512,
         | 
| 16 | 
            +
              "model_type": "bert",
         | 
| 17 | 
            +
              "num_attention_heads": 12,
         | 
| 18 | 
            +
              "num_hidden_layers": 12,
         | 
| 19 | 
            +
              "pad_token_id": 0,
         | 
| 20 | 
            +
              "position_embedding_type": "absolute",
         | 
| 21 | 
            +
              "transformers_version": "4.56.1",
         | 
| 22 | 
            +
              "type_vocab_size": 2,
         | 
| 23 | 
            +
              "use_cache": true,
         | 
| 24 | 
            +
              "vocab_size": 250037
         | 
| 25 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "5.1.0",
         | 
| 4 | 
            +
                "transformers": "4.56.1",
         | 
| 5 | 
            +
                "pytorch": "2.8.0+cu126"
         | 
| 6 | 
            +
              },
         | 
| 7 | 
            +
              "model_type": "SentenceTransformer",
         | 
| 8 | 
            +
              "prompts": {
         | 
| 9 | 
            +
                "query": "",
         | 
| 10 | 
            +
                "document": ""
         | 
| 11 | 
            +
              },
         | 
| 12 | 
            +
              "default_prompt_name": null,
         | 
| 13 | 
            +
              "similarity_fn_name": "cosine"
         | 
| 14 | 
            +
            }
         | 
    	
        config_setfit.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "labels": null,
         | 
| 3 | 
            +
              "normalize_embeddings": false
         | 
| 4 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:99ce4883ee5f811820acd2b69f68b006d976875caf647357f38203dec94d8323
         | 
| 3 | 
            +
            size 470637416
         | 
    	
        model_head.pkl
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:087a35768f34e55c56986159c69bc3c9dfa920fbeb20c898eebdebd977f0de83
         | 
| 3 | 
            +
            size 176993
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              }
         | 
| 14 | 
            +
            ]
         | 
    	
        sentence_bert_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "max_seq_length": 128,
         | 
| 3 | 
            +
                "do_lower_case": false
         | 
| 4 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,51 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "<s>",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "cls_token": {
         | 
| 10 | 
            +
                "content": "<s>",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "eos_token": {
         | 
| 17 | 
            +
                "content": "</s>",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "mask_token": {
         | 
| 24 | 
            +
                "content": "<mask>",
         | 
| 25 | 
            +
                "lstrip": true,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              },
         | 
| 30 | 
            +
              "pad_token": {
         | 
| 31 | 
            +
                "content": "<pad>",
         | 
| 32 | 
            +
                "lstrip": false,
         | 
| 33 | 
            +
                "normalized": false,
         | 
| 34 | 
            +
                "rstrip": false,
         | 
| 35 | 
            +
                "single_word": false
         | 
| 36 | 
            +
              },
         | 
| 37 | 
            +
              "sep_token": {
         | 
| 38 | 
            +
                "content": "</s>",
         | 
| 39 | 
            +
                "lstrip": false,
         | 
| 40 | 
            +
                "normalized": false,
         | 
| 41 | 
            +
                "rstrip": false,
         | 
| 42 | 
            +
                "single_word": false
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "unk_token": {
         | 
| 45 | 
            +
                "content": "<unk>",
         | 
| 46 | 
            +
                "lstrip": false,
         | 
| 47 | 
            +
                "normalized": false,
         | 
| 48 | 
            +
                "rstrip": false,
         | 
| 49 | 
            +
                "single_word": false
         | 
| 50 | 
            +
              }
         | 
| 51 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
         | 
| 3 | 
            +
            size 17082987
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,65 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "<s>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "<pad>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "</s>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "3": {
         | 
| 28 | 
            +
                  "content": "<unk>",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "250001": {
         | 
| 36 | 
            +
                  "content": "<mask>",
         | 
| 37 | 
            +
                  "lstrip": true,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                }
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "bos_token": "<s>",
         | 
| 45 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 46 | 
            +
              "cls_token": "<s>",
         | 
| 47 | 
            +
              "do_lower_case": true,
         | 
| 48 | 
            +
              "eos_token": "</s>",
         | 
| 49 | 
            +
              "extra_special_tokens": {},
         | 
| 50 | 
            +
              "mask_token": "<mask>",
         | 
| 51 | 
            +
              "max_length": 128,
         | 
| 52 | 
            +
              "model_max_length": 128,
         | 
| 53 | 
            +
              "pad_to_multiple_of": null,
         | 
| 54 | 
            +
              "pad_token": "<pad>",
         | 
| 55 | 
            +
              "pad_token_type_id": 0,
         | 
| 56 | 
            +
              "padding_side": "right",
         | 
| 57 | 
            +
              "sep_token": "</s>",
         | 
| 58 | 
            +
              "stride": 0,
         | 
| 59 | 
            +
              "strip_accents": null,
         | 
| 60 | 
            +
              "tokenize_chinese_chars": true,
         | 
| 61 | 
            +
              "tokenizer_class": "BertTokenizer",
         | 
| 62 | 
            +
              "truncation_side": "right",
         | 
| 63 | 
            +
              "truncation_strategy": "longest_first",
         | 
| 64 | 
            +
              "unk_token": "<unk>"
         | 
| 65 | 
            +
            }
         | 
    	
        unigram.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
         | 
| 3 | 
            +
            size 14763260
         | 
