--- library_name: gliner2 --- ## Model Description GLiNER2 extends the original GLiNER architecture to support multi-task information extraction with a schema-driven interface. This base model provides efficient CPU-based inference while maintaining high accuracy across diverse extraction tasks. **Key Features:** - Multi-task capability: NER, classification, and structured extraction - Schema-driven interface with field types and constraints - CPU-first design for fast inference without GPU requirements - 100% local processing with zero external dependencies ## Installation ```bash pip install gliner2 ``` ## Usage ### Entity Extraction ```python from gliner2 import GLiNER2 # Load the model extractor = GLiNER2.from_pretrained("fastino/gliner2-base-v1") # Extract entities text = "Apple CEO Tim Cook announced iPhone 15 in Cupertino yesterday." result = extractor.extract_entities(text, ["company", "person", "product", "location"]) print(result) # Output: {'entities': {'company': ['Apple'], 'person': ['Tim Cook'], 'product': ['iPhone 15'], 'location': ['Cupertino']}} ``` ### Text Classification ```python # Single-label classification result = extractor.classify_text( "This laptop has amazing performance but terrible battery life!", {"sentiment": ["positive", "negative", "neutral"]} ) print(result) # Output: {'sentiment': 'negative'} # Multi-label classification result = extractor.classify_text( "Great camera quality, decent performance, but poor battery life.", { "aspects": { "labels": ["camera", "performance", "battery", "display", "price"], "multi_label": True, "cls_threshold": 0.4 } } ) print(result) # Output: {'aspects': ['camera', 'performance', 'battery']} ``` ### Structured Data Extraction ```python text = "iPhone 15 Pro Max with 256GB storage, A17 Pro chip, priced at $1199." result = extractor.extract_json( text, { "product": [ "name::str::Full product name and model", "storage::str::Storage capacity", "processor::str::Chip or processor information", "price::str::Product price with currency" ] } ) print(result) # Output: { # 'product': [{ # 'name': 'iPhone 15 Pro Max', # 'storage': '256GB', # 'processor': 'A17 Pro chip', # 'price': '$1199' # }] # } ``` ### Multi-Task Schema Composition ```python # Combine all extraction types schema = (extractor.create_schema() .entities({ "person": "Names of people or individuals", "company": "Organization or business names", "product": "Products or services mentioned" }) .classification("sentiment", ["positive", "negative", "neutral"]) .structure("product_info") .field("name", dtype="str") .field("price", dtype="str") .field("features", dtype="list") ) text = "Apple CEO Tim Cook unveiled the iPhone 15 Pro for $999." results = extractor.extract(text, schema) print(results) # Output: { # 'entities': {'person': ['Tim Cook'], 'company': ['Apple'], 'product': ['iPhone 15 Pro']}, # 'sentiment': 'positive', # 'product_info': [{'name': 'iPhone 15 Pro', 'price': '$999', 'features': [...]}] # } ``` ## Model Details - **Model Type:** Bidirectional Transformer Encoder (BERT-based) - **Parameters:** 205M - **Input:** Text sequences - **Output:** Entities, classifications, and structured data - **Architecture:** Based on GLiNER with multi-task extensions - **Training Data:** Multi-domain datasets for NER, classification, and structured extraction ## Performance This model is optimized for: - Fast CPU inference (no GPU required) - Low latency applications - Resource-constrained environments - Multi-task extraction scenarios ## Citation If you use this model in your research, please cite: ```bibtex @misc{zaratiana2025gliner2efficientmultitaskinformation, title={GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface}, author={Urchade Zaratiana and Gil Pasternak and Oliver Boyd and George Hurn-Maloney and Ash Lewis}, year={2025}, eprint={2507.18546}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2507.18546}, } ``` ## License This project is licensed under the Apache License 2.0. ## Links - **Repository:** https://github.com/fastino-ai/GLiNER2 - **Paper:** https://arxiv.org/abs/2507.18546 - **Organization:** [Fastino AI](https://fastino.ai)