File size: 4,388 Bytes
baa3af3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---

license: cc-by-4.0
language: ti
widget:
- text: "<text-to-classify>"
datasets:
- fgaim/tigrinya-abusive-language-detection
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: tiroberta-tiald-all-tasks
  results:
  - task:
      name: Text Classification
      type: text-classification
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8666666666666667
    - name: F1
      type: f1
      value: 0.8666502037288554
    - name: Precision
      type: precision
      value: 0.8668478260869565
    - name: Recall
      type: recall
      value: 0.8666666666666667
---



# TiRoBERTa Fine-tuned for Tigrinya Abusive Language Detection

This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/tiroberta-base) on the [TiALD](https://huggingface.co/datasets/fgaim/tigrinya-abusive-language-detection) dataset.

**Tigrinya Abusive Language Detection (TiALD) Dataset** is a large-scale, multi-task benchmark dataset for abusive language detection in the Tigrinya language. It consists of **13,717 YouTube comments** annotated for **abusiveness**, **sentiment**, and **topic** tasks. The dataset includes comments written in both the **Ge’ez script** and prevalent non-standard Latin **transliterations** to mirror real-world usage.

> ⚠️ The dataset contains explicit, obscene, and potentially hateful language. It should be used for research purposes only. ⚠️

This work accompanies the paper ["A Multi-Task Benchmark for Abusive Language Detection in Low-Resource Settings"](https://arxiv.org/abs/2505.12116).

## Model Usage

```python

from transformers import pipeline



tiald_pipe = pipeline("text-classification", model="fgaim/tiroberta-abusiveness-detection")

tiald_pipe("<text-to-classify>")

```

## Performance Metrics

This model achieves the following results on the evaluation set:

```json

"abusiveness_metrics": {

    "accuracy": 0.8666666666666667,

    "macro_f1": 0.8666502037288554,

    "macro_precision": 0.8668478260869565,

    "macro_recall": 0.8666666666666667,

    "weighted_f1": 0.8666502037288554,

    "weighted_precision": 0.8668478260869565,

    "weighted_recall": 0.8666666666666667

}

```

## Training Hyperparameters

The following hyperparameters were used during training:

- learning_rate: 2e-05

- train_batch_size: 16

- optimizer: Adam (betas=0.9, 0.999, epsilon=1e-08)

- lr_scheduler_type: linear

- num_epochs: 4.0
- seed: 42

## Intended Usage

The TiALD dataset and models designed to support:

- Research in abusive language detection in low-resource languages
- Context-aware abuse, sentiment, and topic modeling
- Multi-task and transfer learning with digraphic scripts
- Evaluation of multilingual and fine-tuned language models

Researchers and developers should avoid using this dataset for direct moderation or enforcement tasks without human oversight.

## Ethical Considerations

- **Sensitive content**: Contains toxic and offensive language. Use for research purposes only.
- **Cultural sensitivity**: Abuse is context-dependent; annotations were made by native speakers to account for cultural nuance.
- **Bias mitigation**: Data sampling and annotation were carefully designed to minimize reinforcement of stereotypes.
- **Privacy**: All the source content for the dataset is publicly available on YouTube.
- **Respect for expression**: The dataset should not be used for automated censorship without human review.

This research received IRB approval (Ref: KH2022-133) and followed ethical data collection and annotation practices, including informed consent of annotators.

## Citation

If you use this model or the `TiALD` dataset in your work, please cite:

```bibtex

@misc{gaim-etal-2025-tiald-benchmark,

  title         = {A Multi-Task Benchmark for Abusive Language Detection in Low-Resource Settings},

  author        = {Fitsum Gaim and Hoyun Song and Huije Lee and Changgeon Ko and Eui Jun Hwang and Jong C. Park},

  year          = {2025},

  eprint        = {2505.12116},

  archiveprefix = {arXiv},

  primaryclass  = {cs.CL},

  url           = {https://arxiv.org/abs/2505.12116}

}

```

## License

This dataset is released under the [Creative Commons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).