File size: 4,470 Bytes
af37583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
language: ti
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- text: "ግራፋይት ኣብ መላእ ዓለም ዳርጋ ብምዕሩይ ዝርጋሐ’ዩ ዝርከብ"
---
# TiRoBERTa BiEncoder Model
This model is a bi-encoder model for the Tigrinya language based on [TiRoBERTa-base](https://huggingface.co/fgaim/tiroberta-base).
The model maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like text embedding, clustering, or semantic search.
This is part of a work that introduces monolingual bi-encoder language models for Tigrinya. For a smaller and lightweight model look at [TiELECTRA-bi-encoder](https://huggingface.co/fgaim/tielectra-bi-encoder). The models are based on the [sentence-transformers](https://www.sbert.net) architecture and are trained on Tigrinya question-answering and information retrieval datasets. The models are designed to support semantic search tasks, such as information retrieval, text representation, and question answering.
## Using Model with Sentence-Transformers
Using this model becomes easy when you have sentence-transformers installed:
```shell
pip install -U sentence-transformers
```
Then use the model as follows:
```python
from sentence_transformers import SentenceTransformer
sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"]
model = SentenceTransformer('fgaim/tiroberta-bi-encoder')
embeddings = model.encode(sentences)
print(embeddings)
```
## Using Model with 🤗 Transformers
Use the transformers library as follows:
Pass the input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
import torch
from transformers import AutoModel, AutoTokenizer
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["ሓደ ሰብኣይ ፈረስ ይጋልብ ኣሎ።", "ሓንቲ ጓል ክራር ትጻወት ኣላ።"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("fgaim/tiroberta-bi-encoder")
model = AutoModel.from_pretrained("fgaim/tiroberta-bi-encoder")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
print("Sentence embeddings:", sentence_embeddings)
```
## Architecture
### Base Model
The model properties:
| Model Size | Layers | Attn. Heads | Hidden Size | FFN | Parameters | Max. Seq |
|------------|----|----|-----|------|------|------|
| BASE | 12 | 12 | 768 | 3072 | 125M | 512 |
### BiEncoder Model
- Maximum sequence length: `512`
- Word embedding dimension: `768`
```text
SentenceTransformer(
Transformer(
{
'max_seq_length': 512,
'do_lower_case': False
}
) # with Transformer model: RobertaModel
Pooling(
{
'word_embedding_dimension': 768,
'pooling_mode_cls_token': False,
'pooling_mode_mean_tokens': True,
'pooling_mode_max_tokens': False,
'pooling_mode_mean_sqrt_len_tokens': False,
'pooling_mode_weightedmean_tokens': False,
'pooling_mode_lasttoken': False,
'include_prompt': True,
}
)
)
```
## Citation
If you use this model in your product or research, you can cite it as follows:
```bibtex
@misc{gaim-2024-semantic-search,
title = {{Semantic Search Models for Tigrinya}},
author = {Fitsum Gaim},
month = {January},
year = {2024},
publisher = {Hugging Face Hub},
doi = {10.57967/hf/6068},
url = {https://huggingface.co/fgaim/tiroberta-bi-encoder}
}
```
|