File size: 30,939 Bytes
612b51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc4e288
612b51f
 
 
 
 
 
 
 
 
 
 
bc4e288
612b51f
 
 
 
 
 
 
 
 
 
 
 
 
bc4e288
612b51f
 
 
 
 
 
 
 
 
bc4e288
612b51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc4e288
612b51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc4e288
612b51f
 
aac0a08
612b51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac0a08
612b51f
 
 
aac0a08
612b51f
 
 
 
 
 
aac0a08
5e27940
612b51f
5e27940
612b51f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This is a fully self-contained version of the model script.
# It includes the MDMGenerationMixin and all necessary utilities for public release.

import logging
import warnings
import copy
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.distributions as dists
from torch import nn
from torch.nn import functional as F

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from transformers.generation.configuration_utils import GenerationConfig
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    ModelOutput,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from transformers.processing_utils import Unpack
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)

logger = logging.getLogger(__name__)

# ==============================================================================
# Start of Generation Utilities (Integrated directly into this file)
# ==============================================================================

def top_p_logits(logits, top_p=None):
    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
    sorted_indices_to_remove = cumulative_probs > top_p
    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
    sorted_indices_to_remove[..., 0] = 0
    mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
    mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
    logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
    return logits

def top_k_logits(logits, top_k=None):
    if top_k is None or top_k == 0:
        return logits
    top_k = min(top_k, logits.size(-1))
    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
    logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
    return logits

def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
    if temperature > 0:
        logits = logits / temperature
    if top_p is not None and top_p < 1:
        logits = top_p_logits(logits, top_p)
    if top_k is not None:
        logits = top_k_logits(logits, top_k)
    probs = torch.softmax(logits.float(), dim=-1)
    if temperature > 0:
        x0 = dists.Categorical(probs=probs).sample()
    else:
        _, x0 = probs.max(dim=-1)
    
    confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)

    if margin_confidence:
        sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
        top1_probs = sorted_probs[..., 0]
        top2_probs = sorted_probs[..., 1]
        confidence = top1_probs - top2_probs
    elif neg_entropy:
        log_probs = torch.log(probs.clamp(min=1e-10))
        confidence = (probs * log_probs).sum(dim=-1)
    
    return confidence, x0


@dataclass
class MDMModelOutput(ModelOutput):
    sequences: torch.LongTensor = None
    history: Optional[Tuple[torch.FloatTensor]] = None

class MDMGenerationConfig(GenerationConfig):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.temperature: float = kwargs.pop("temperature", 0.0)
        self.top_p: Optional[float] = kwargs.pop("top_p", None)
        self.top_k: Optional[int] = kwargs.pop("top_k", None)
        self.eps: float = kwargs.pop("eps", 1e-3)
        self.steps: int = kwargs.pop("steps", 512)
        self.alg: str = kwargs.pop("alg", 'entropy')
        self.alg_temp: Optional[float] = kwargs.pop("alg_temp", 0.0)
        self.output_history: bool = kwargs.pop("output_history", False)
        self.mask_token_id = kwargs.pop("mask_token_id", None)


class MDMGenerationMixin:
    """
    Mixin class for Masked Diffusion Model generation.
    """
    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        if expand_size == 1:
            return input_ids, attention_mask
        
        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)
        if attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(expand_size, dim=0)
        return input_ids, attention_mask

    def _prepare_generation_config(
        self, generation_config: Optional[GenerationConfig], **kwargs
    ) -> MDMGenerationConfig:
        if generation_config is None:
            generation_config = self.generation_config
        
        if not isinstance(generation_config, MDMGenerationConfig):
            generation_config = MDMGenerationConfig.from_dict(generation_config.to_dict())

        generation_config.update(**kwargs)
        return generation_config

    @torch.no_grad()
    def diffusion_generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        generation_config: Optional[MDMGenerationConfig] = None,
        **kwargs,
    ) -> Union[MDMModelOutput, torch.LongTensor]:
        
        generation_config = self._prepare_generation_config(generation_config, **kwargs)
        input_ids = inputs
        attention_mask = kwargs.get("attention_mask", None)

        if input_ids is None:
            raise ValueError("`inputs` must be provided for diffusion generation.")

        if generation_config.max_new_tokens is not None:
            generation_config.max_length = input_ids.shape[-1] + generation_config.max_new_tokens
        
        input_ids, attention_mask = self._expand_inputs_for_generation(
            expand_size=generation_config.num_return_sequences,
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        return self._sample(
            input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config
        )

    def _sample(
        self,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.LongTensor],
        generation_config: MDMGenerationConfig
    ) -> Union[MDMModelOutput, torch.LongTensor]:
        
        max_length = generation_config.max_length
        mask_token_id = generation_config.mask_token_id
        if mask_token_id is None:
            raise ValueError("`mask_token_id` must be set in the generation config.")

        steps = generation_config.steps
        eps = generation_config.eps
        alg = generation_config.alg
        alg_temp = generation_config.alg_temp
        temperature = generation_config.temperature
        top_p = generation_config.top_p
        top_k = generation_config.top_k

        histories = [] if generation_config.output_history else None
        x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id)
        gen_attention_mask = (x != self.config.pad_token_id).long() if self.config.pad_token_id is not None else None
        timesteps = torch.linspace(1, eps, steps + 1, device=x.device)

        for i in range(steps):
            mask_index = (x == mask_token_id)
            if not mask_index.any():
                break
            outputs = self(input_ids=x, attention_mask=gen_attention_mask, is_causal=False)
            logits = outputs.logits
            logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1)
            mask_logits = logits[mask_index]
            t = timesteps[i]
            s = timesteps[i + 1]

            confidence_alg_map = {'maskgit_plus': False, 'topk_margin': True, 'entropy': True}
            is_margin_conf = confidence_alg_map.get(alg, False)
            is_neg_entropy = alg == 'entropy'
            
            confidence, x0 = sample_tokens(mask_logits, temperature, top_p, top_k, margin_confidence=is_margin_conf, neg_entropy=is_neg_entropy)
            num_masked = mask_index.sum(dim=-1, keepdim=True)
            gamma = 1 - s / t
            num_to_unmask = (num_masked * gamma).long()
            full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=confidence.dtype)
            full_confidence[mask_index] = confidence

            if (alg_temp is not None and alg_temp > 0):
                unmask_probs = F.softmax(full_confidence / alg_temp, dim=-1)
                unmask_indices = torch.multinomial(unmask_probs, num_samples=num_to_unmask.max(), replacement=False)
            else:
                _, unmask_indices = torch.topk(full_confidence, k=num_to_unmask.max(), dim=-1)

            rows = torch.arange(x.size(0), device=x.device).unsqueeze(1)
            unmask_selection_mask = torch.zeros_like(x, dtype=torch.bool)
            unmask_selection_mask[rows, unmask_indices] = True
            unmask_selection_mask = unmask_selection_mask & (torch.cumsum(unmask_selection_mask.long(), dim=-1) <= num_to_unmask)
            x_unmasked_proposals = torch.full_like(x, fill_value=mask_token_id)
            x_unmasked_proposals[mask_index] = x0
            x[unmask_selection_mask] = x_unmasked_proposals[unmask_selection_mask]

            if histories is not None:
                histories.append(x.clone())

        if generation_config.return_dict_in_generate:
            return MDMModelOutput(sequences=x, history=histories)
        else:
            return x

# ==============================================================================
# End of Generation Utilities
# ==============================================================================


_CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
_CONFIG_FOR_DOC = "Qwen2Config"


class Qwen2MLP(nn.Module):
    # ... (class unchanged)
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj

def rotate_half(x):
    # ... (function unchanged)
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    # ... (function unchanged)
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    # ... (function unchanged)
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

class Qwen2Attention(nn.Module):
    # ... (class unchanged)
    def __init__(self, config: Qwen2Config, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
        self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
        self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        is_causal: bool = True,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()
        hidden_shape = (bsz, q_len, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        full_q_len = query_states.size(2)
        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get(self.config._attn_implementation, None)
        if attention_interface is None:
             raise ValueError(f"Attention implementation {self.config._attn_implementation} not found.")

        if self.config._attn_implementation == "sdpa" and output_attentions:
            logger.warning_once("Using SDPA with `output_attentions=True` requires eager attention.")
            attention_interface = ALL_ATTENTION_FUNCTIONS["eager"]


        attn_output, attn_weights = attention_interface(
            query_states,
            key_states,
            value_states,
            attention_mask=attention_mask,
            dropout=self.attention_dropout if self.training else 0.0,
            is_causal=is_causal,
            **kwargs,
        )
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size)
        attn_output = self.o_proj(attn_output)
        
        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

class Qwen2RMSNorm(nn.Module):
    # ... (class unchanged)
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

class Qwen2DecoderLayer(nn.Module):
    # ... (class unchanged)
    def __init__(self, config: Qwen2Config, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
        self.mlp = Qwen2MLP(config)
        self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        is_causal: bool = True,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            is_causal=is_causal,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (self_attn_weights,)
        if use_cache:
            outputs += (present_key_value,)

        return outputs

class Qwen2RotaryEmbedding(nn.Module):
    # ... (class unchanged)
    def __init__(self, config: Qwen2Config, device=None):
        super().__init__()
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings
        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def _dynamic_frequency_update(self, position_ids, device):
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:
            inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
            self.register_buffer("inv_freq", inv_freq, persistent=False)
            self.max_seq_len_cached = seq_len
        if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:
            self.original_inv_freq = self.original_inv_freq.to(device)
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.original_max_seq_len

    @torch.no_grad()
    def forward(self, x, position_ids):
        if "dynamic" in self.rope_type:
            self._dynamic_frequency_update(position_ids, device=x.device)
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        cos = cos * self.attention_scaling
        sin = sin * self.attention_scaling
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)

class Qwen2PreTrainedModel(PreTrainedModel):
    # ... (class unchanged)
    config_class = Qwen2Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Qwen2DecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

class Qwen2Model(Qwen2PreTrainedModel):
    # ... (class unchanged)
    def __init__(self, config: Qwen2Config):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = Qwen2RotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        is_causal: bool = True,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.")
            use_cache = False
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        past_key_values_length = 0
        if use_cache:
            if past_key_values is None:
                past_key_values = DynamicCache()
            past_key_values_length = past_key_values.get_seq_length()

        if cache_position is None:
            cache_position = torch.arange(
                past_key_values_length, past_key_values_length + inputs_embeds.shape[1], device=inputs_embeds.device
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, is_causal)
        hidden_states = inputs_embeds
        position_embeddings = self.rotary_emb(hidden_states, position_ids)
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                is_causal=is_causal,
                **flash_attn_kwargs,
            )
            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)
        if output_hidden_states:
            all_hidden_states += (hidden_states,)
        
        next_cache = next_decoder_cache if use_cache else None
        
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    def _update_causal_mask(self, attention_mask, input_tensor, cache_position, is_causal):
        if not is_causal:
            return attention_mask
        
        seq_len = input_tensor.shape[1]
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None
        
        dtype = input_tensor.dtype
        device = input_tensor.device
        
        causal_mask = torch.triu(torch.full((seq_len, seq_len), torch.finfo(dtype).min, device=device), 1)
        causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
        
        if attention_mask is not None:
             causal_mask = causal_mask.clone()
             causal_mask = causal_mask + attention_mask[:, None, None, :]
        
        return causal_mask

class Qwen2ForCausalLM(Qwen2PreTrainedModel, MDMGenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = Qwen2Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        is_causal: bool = True,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            is_causal=is_causal,
            **kwargs,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()
        loss = None
        
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = torch.nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

ModelClass = Qwen2ForCausalLM

__all__ = ["Qwen2ForCausalLM", "Qwen2Model", "Qwen2PreTrainedModel", "MDMGenerationMixin"]