|
|
|
|
|
import warnings |
|
import copy |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.distributions as dists |
|
from torch.nn import functional as F |
|
from transformers import __version__ |
|
from transformers.generation.configuration_utils import GenerationConfig |
|
from transformers.utils import ModelOutput, is_torchdynamo_compiling, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def top_p_logits(logits, top_p=None): |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device) |
|
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove) |
|
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min) |
|
return logits |
|
|
|
def top_k_logits(logits, top_k=None): |
|
if top_k is None or top_k == 0: |
|
return logits |
|
top_k = min(top_k, logits.size(-1)) |
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min) |
|
return logits |
|
|
|
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False): |
|
if temperature > 0: |
|
logits = logits / temperature |
|
if top_p is not None and top_p < 1: |
|
logits = top_p_logits(logits, top_p) |
|
if top_k is not None: |
|
logits = top_k_logits(logits, top_k) |
|
probs = torch.softmax(logits.float(), dim=-1) |
|
if temperature > 0: |
|
x0 = dists.Categorical(probs=probs).sample() |
|
else: |
|
_, x0 = probs.max(dim=-1) |
|
|
|
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1) |
|
|
|
if margin_confidence: |
|
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True) |
|
top1_probs = sorted_probs[..., 0] |
|
top2_probs = sorted_probs[..., 1] |
|
confidence = top1_probs - top2_probs |
|
elif neg_entropy: |
|
log_probs = torch.log(probs.clamp(min=1e-10)) |
|
confidence = (probs * log_probs).sum(dim=-1) |
|
|
|
return confidence, x0 |
|
|
|
|
|
@dataclass |
|
class MDMModelOutput(ModelOutput): |
|
sequences: torch.LongTensor = None |
|
history: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
class MDMGenerationConfig(GenerationConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.temperature: float = kwargs.pop("temperature", 0.0) |
|
self.top_p: Optional[float] = kwargs.pop("top_p", None) |
|
self.top_k: Optional[int] = kwargs.pop("top_k", None) |
|
self.eps: float = kwargs.pop("eps", 1e-3) |
|
self.steps: int = kwargs.pop("steps", 512) |
|
self.alg: str = kwargs.pop("alg", 'entropy') |
|
self.alg_temp: Optional[float] = kwargs.pop("alg_temp", 0.0) |
|
self.output_history: bool = kwargs.pop("output_history", False) |
|
self.mask_token_id = kwargs.pop("mask_token_id", None) |
|
|
|
|
|
class MDMGenerationMixin: |
|
""" |
|
Mixin class for Masked Diffusion Model generation, adapted from the Dream model's generation utils. |
|
""" |
|
@staticmethod |
|
def _expand_inputs_for_generation( |
|
expand_size: int = 1, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None |
|
) -> Tuple[torch.LongTensor, Dict[str, Any]]: |
|
if expand_size == 1: |
|
return input_ids, attention_mask |
|
|
|
if input_ids is not None: |
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.repeat_interleave(expand_size, dim=0) |
|
return input_ids, attention_mask |
|
|
|
def _prepare_generation_config( |
|
self, generation_config: Optional[GenerationConfig], **kwargs |
|
) -> MDMGenerationConfig: |
|
if generation_config is None: |
|
generation_config = self.generation_config |
|
|
|
|
|
if not isinstance(generation_config, MDMGenerationConfig): |
|
generation_config = MDMGenerationConfig.from_dict(generation_config.to_dict()) |
|
|
|
|
|
generation_config.update(**kwargs) |
|
return generation_config |
|
|
|
@torch.no_grad() |
|
def diffusion_generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[MDMGenerationConfig] = None, |
|
**kwargs, |
|
) -> Union[MDMModelOutput, torch.LongTensor]: |
|
|
|
|
|
generation_config = self._prepare_generation_config(generation_config, **kwargs) |
|
|
|
|
|
input_ids = inputs |
|
attention_mask = kwargs.get("attention_mask", None) |
|
|
|
if input_ids is None: |
|
raise ValueError("`inputs` must be provided for diffusion generation.") |
|
|
|
if generation_config.max_new_tokens is not None: |
|
generation_config.max_length = input_ids.shape[-1] + generation_config.max_new_tokens |
|
|
|
|
|
input_ids, attention_mask = self._expand_inputs_for_generation( |
|
expand_size=generation_config.num_return_sequences, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask |
|
) |
|
|
|
return self._sample( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config |
|
) |
|
|
|
def _sample( |
|
self, |
|
input_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.LongTensor], |
|
generation_config: MDMGenerationConfig |
|
) -> Union[MDMModelOutput, torch.LongTensor]: |
|
|
|
|
|
max_length = generation_config.max_length |
|
mask_token_id = generation_config.mask_token_id |
|
if mask_token_id is None: |
|
raise ValueError("`mask_token_id` must be set in the generation config.") |
|
|
|
steps = generation_config.steps |
|
eps = generation_config.eps |
|
alg = generation_config.alg |
|
alg_temp = generation_config.alg_temp |
|
temperature = generation_config.temperature |
|
top_p = generation_config.top_p |
|
top_k = generation_config.top_k |
|
|
|
histories = [] if generation_config.output_history else None |
|
|
|
|
|
x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id) |
|
|
|
|
|
|
|
gen_attention_mask = (x != self.config.pad_token_id).long() if self.config.pad_token_id is not None else None |
|
|
|
timesteps = torch.linspace(1, eps, steps + 1, device=x.device) |
|
|
|
for i in range(steps): |
|
mask_index = (x == mask_token_id) |
|
if not mask_index.any(): |
|
break |
|
|
|
outputs = self(input_ids=x, attention_mask=gen_attention_mask, is_causal=False) |
|
logits = outputs.logits |
|
|
|
|
|
logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1) |
|
|
|
mask_logits = logits[mask_index] |
|
t = timesteps[i] |
|
s = timesteps[i + 1] |
|
|
|
if alg == 'origin': |
|
p_transfer = 1 - s / t if i < steps - 1 else 1 |
|
x0 = torch.full_like(x[mask_index], fill_value=mask_token_id, device=self.device, dtype=torch.long) |
|
transfer_index_t_s = torch.rand(*x0.shape, device=self.device) < p_transfer |
|
_, sampled_tokens = sample_tokens(mask_logits[transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k) |
|
x0[transfer_index_t_s] = sampled_tokens |
|
x[mask_index] = x0 |
|
else: |
|
|
|
confidence_alg_map = {'maskgit_plus': False, 'topk_margin': True, 'entropy': True} |
|
is_margin_conf = confidence_alg_map.get(alg, False) |
|
is_neg_entropy = alg == 'entropy' |
|
|
|
confidence, x0 = sample_tokens(mask_logits, temperature, top_p, top_k, margin_confidence=is_margin_conf, neg_entropy=is_neg_entropy) |
|
|
|
num_masked = mask_index.sum(dim=-1, keepdim=True) |
|
gamma = 1 - s / t |
|
num_to_unmask = (num_masked * gamma).long() |
|
|
|
|
|
full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=confidence.dtype) |
|
full_confidence[mask_index] = confidence |
|
|
|
if (alg_temp is not None and alg_temp > 0): |
|
|
|
unmask_probs = F.softmax(full_confidence / alg_temp, dim=-1) |
|
unmask_indices = torch.multinomial(unmask_probs, num_samples=num_to_unmask.max(), replacement=False) |
|
else: |
|
|
|
_, unmask_indices = torch.topk(full_confidence, k=num_to_unmask.max(), dim=-1) |
|
|
|
|
|
rows = torch.arange(x.size(0), device=x.device).unsqueeze(1) |
|
unmask_selection_mask = torch.zeros_like(x, dtype=torch.bool) |
|
unmask_selection_mask[rows, unmask_indices] = True |
|
|
|
|
|
unmask_selection_mask = unmask_selection_mask & (torch.cumsum(unmask_selection_mask.long(), dim=-1) <= num_to_unmask) |
|
|
|
|
|
x_unmasked_proposals = torch.full_like(x, fill_value=mask_token_id) |
|
x_unmasked_proposals[mask_index] = x0 |
|
|
|
|
|
x[unmask_selection_mask] = x_unmasked_proposals[unmask_selection_mask] |
|
|
|
if histories is not None: |
|
histories.append(x.clone()) |
|
|
|
if generation_config.return_dict_in_generate: |
|
return MDMModelOutput(sequences=x, history=histories) |
|
else: |
|
return x |