# veomni/models/transformers/qwen2/generation_utils.py import warnings import copy from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import torch import torch.distributions as dists from torch.nn import functional as F from transformers import __version__ from transformers.generation.configuration_utils import GenerationConfig from transformers.utils import ModelOutput, is_torchdynamo_compiling, logging logger = logging.get_logger(__name__) def top_p_logits(logits, top_p=None): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device) mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove) logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min) return logits def top_k_logits(logits, top_k=None): if top_k is None or top_k == 0: return logits top_k = min(top_k, logits.size(-1)) indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min) return logits def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False): if temperature > 0: logits = logits / temperature if top_p is not None and top_p < 1: logits = top_p_logits(logits, top_p) if top_k is not None: logits = top_k_logits(logits, top_k) probs = torch.softmax(logits.float(), dim=-1) if temperature > 0: x0 = dists.Categorical(probs=probs).sample() else: _, x0 = probs.max(dim=-1) confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1) if margin_confidence: sorted_probs, _ = torch.sort(probs, dim=-1, descending=True) top1_probs = sorted_probs[..., 0] top2_probs = sorted_probs[..., 1] confidence = top1_probs - top2_probs elif neg_entropy: log_probs = torch.log(probs.clamp(min=1e-10)) confidence = (probs * log_probs).sum(dim=-1) return confidence, x0 @dataclass class MDMModelOutput(ModelOutput): sequences: torch.LongTensor = None history: Optional[Tuple[torch.FloatTensor]] = None class MDMGenerationConfig(GenerationConfig): def __init__(self, **kwargs): super().__init__(**kwargs) self.temperature: float = kwargs.pop("temperature", 0.0) self.top_p: Optional[float] = kwargs.pop("top_p", None) self.top_k: Optional[int] = kwargs.pop("top_k", None) self.eps: float = kwargs.pop("eps", 1e-3) self.steps: int = kwargs.pop("steps", 512) self.alg: str = kwargs.pop("alg", 'entropy') self.alg_temp: Optional[float] = kwargs.pop("alg_temp", 0.0) self.output_history: bool = kwargs.pop("output_history", False) self.mask_token_id = kwargs.pop("mask_token_id", None) class MDMGenerationMixin: """ Mixin class for Masked Diffusion Model generation, adapted from the Dream model's generation utils. """ @staticmethod def _expand_inputs_for_generation( expand_size: int = 1, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None ) -> Tuple[torch.LongTensor, Dict[str, Any]]: if expand_size == 1: return input_ids, attention_mask if input_ids is not None: input_ids = input_ids.repeat_interleave(expand_size, dim=0) if attention_mask is not None: attention_mask = attention_mask.repeat_interleave(expand_size, dim=0) return input_ids, attention_mask def _prepare_generation_config( self, generation_config: Optional[GenerationConfig], **kwargs ) -> MDMGenerationConfig: if generation_config is None: generation_config = self.generation_config # Use MDMGenerationConfig as the target class if not isinstance(generation_config, MDMGenerationConfig): generation_config = MDMGenerationConfig.from_dict(generation_config.to_dict()) # Update with kwargs generation_config.update(**kwargs) return generation_config @torch.no_grad() def diffusion_generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[MDMGenerationConfig] = None, **kwargs, ) -> Union[MDMModelOutput, torch.LongTensor]: # 1. Prepare generation config generation_config = self._prepare_generation_config(generation_config, **kwargs) # 2. Prepare inputs input_ids = inputs attention_mask = kwargs.get("attention_mask", None) if input_ids is None: raise ValueError("`inputs` must be provided for diffusion generation.") if generation_config.max_new_tokens is not None: generation_config.max_length = input_ids.shape[-1] + generation_config.max_new_tokens # 3. Expand inputs for multi-sequence generation input_ids, attention_mask = self._expand_inputs_for_generation( expand_size=generation_config.num_return_sequences, input_ids=input_ids, attention_mask=attention_mask ) # 4. Run the sampling loop return self._sample( input_ids, attention_mask=attention_mask, generation_config=generation_config ) def _sample( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor], generation_config: MDMGenerationConfig ) -> Union[MDMModelOutput, torch.LongTensor]: # Extract params from config max_length = generation_config.max_length mask_token_id = generation_config.mask_token_id if mask_token_id is None: raise ValueError("`mask_token_id` must be set in the generation config.") steps = generation_config.steps eps = generation_config.eps alg = generation_config.alg alg_temp = generation_config.alg_temp temperature = generation_config.temperature top_p = generation_config.top_p top_k = generation_config.top_k histories = [] if generation_config.output_history else None # Pad input_ids to max_length with mask tokens x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id) # The model expects a bidirectional mask, so we just use the presence of pad_token_id # for the attention mask during generation. gen_attention_mask = (x != self.config.pad_token_id).long() if self.config.pad_token_id is not None else None timesteps = torch.linspace(1, eps, steps + 1, device=x.device) for i in range(steps): mask_index = (x == mask_token_id) if not mask_index.any(): # Stop if no tokens are masked break # is_causal=False is crucial for bidirectional attention outputs = self(input_ids=x, attention_mask=gen_attention_mask, is_causal=False) logits = outputs.logits # CRITICAL: Shift logits to predict the next token, aligning with training logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1) mask_logits = logits[mask_index] t = timesteps[i] s = timesteps[i + 1] if alg == 'origin': p_transfer = 1 - s / t if i < steps - 1 else 1 x0 = torch.full_like(x[mask_index], fill_value=mask_token_id, device=self.device, dtype=torch.long) transfer_index_t_s = torch.rand(*x0.shape, device=self.device) < p_transfer _, sampled_tokens = sample_tokens(mask_logits[transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k) x0[transfer_index_t_s] = sampled_tokens x[mask_index] = x0 else: # Confidence-based sampling (maskgit, entropy, etc.) confidence_alg_map = {'maskgit_plus': False, 'topk_margin': True, 'entropy': True} is_margin_conf = confidence_alg_map.get(alg, False) is_neg_entropy = alg == 'entropy' confidence, x0 = sample_tokens(mask_logits, temperature, top_p, top_k, margin_confidence=is_margin_conf, neg_entropy=is_neg_entropy) num_masked = mask_index.sum(dim=-1, keepdim=True) gamma = 1 - s / t num_to_unmask = (num_masked * gamma).long() # Place confidence scores back into a full tensor to find top-k across the sequence full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=confidence.dtype) full_confidence[mask_index] = confidence if (alg_temp is not None and alg_temp > 0): # Temperature-based sampling of which tokens to unmask unmask_probs = F.softmax(full_confidence / alg_temp, dim=-1) unmask_indices = torch.multinomial(unmask_probs, num_samples=num_to_unmask.max(), replacement=False) else: # Top-k confidence sampling _, unmask_indices = torch.topk(full_confidence, k=num_to_unmask.max(), dim=-1) # Create a mask for the tokens we are going to unmask rows = torch.arange(x.size(0), device=x.device).unsqueeze(1) unmask_selection_mask = torch.zeros_like(x, dtype=torch.bool) unmask_selection_mask[rows, unmask_indices] = True # Filter indices based on per-row `num_to_unmask` unmask_selection_mask = unmask_selection_mask & (torch.cumsum(unmask_selection_mask.long(), dim=-1) <= num_to_unmask) # Place the newly generated tokens (x0) into a full tensor x_unmasked_proposals = torch.full_like(x, fill_value=mask_token_id) x_unmasked_proposals[mask_index] = x0 # Update the main tensor `x` with the unmasked tokens x[unmask_selection_mask] = x_unmasked_proposals[unmask_selection_mask] if histories is not None: histories.append(x.clone()) if generation_config.return_dict_in_generate: return MDMModelOutput(sequences=x, history=histories) else: return x