deberta-semeval25_EN08_WAR_fold2
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.0960
- Precision Samples: 0.1988
- Recall Samples: 0.5060
- F1 Samples: 0.2520
- Precision Macro: 0.6181
- Recall Macro: 0.3893
- F1 Macro: 0.2361
- Precision Micro: 0.1818
- Recall Micro: 0.4914
- F1 Micro: 0.2654
- Precision Weighted: 0.4127
- Recall Weighted: 0.4914
- F1 Weighted: 0.2307
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.5664 | 1.0 | 43 | 9.9417 | 0.2132 | 0.1583 | 0.1649 | 0.9566 | 0.1629 | 0.1372 | 0.2056 | 0.1595 | 0.1796 | 0.8520 | 0.1595 | 0.0660 |
| 10.2989 | 2.0 | 86 | 9.7826 | 0.1727 | 0.2999 | 0.1900 | 0.9010 | 0.2250 | 0.1492 | 0.1578 | 0.3060 | 0.2082 | 0.7203 | 0.3060 | 0.0948 |
| 10.1856 | 3.0 | 129 | 9.6503 | 0.1719 | 0.3409 | 0.2040 | 0.8506 | 0.2433 | 0.1616 | 0.1719 | 0.3319 | 0.2265 | 0.6288 | 0.3319 | 0.1181 |
| 10.0353 | 4.0 | 172 | 9.5301 | 0.1920 | 0.3642 | 0.2248 | 0.7977 | 0.2603 | 0.1855 | 0.1830 | 0.3621 | 0.2431 | 0.5742 | 0.3621 | 0.1653 |
| 10.0037 | 5.0 | 215 | 9.3901 | 0.2020 | 0.4115 | 0.2361 | 0.7127 | 0.2802 | 0.1864 | 0.1836 | 0.3966 | 0.2510 | 0.4976 | 0.3966 | 0.1708 |
| 9.704 | 6.0 | 258 | 9.3016 | 0.2038 | 0.4760 | 0.2469 | 0.6898 | 0.3499 | 0.2108 | 0.1821 | 0.4397 | 0.2576 | 0.4723 | 0.4397 | 0.1959 |
| 8.8576 | 7.0 | 301 | 9.1813 | 0.2014 | 0.4879 | 0.2488 | 0.6385 | 0.3684 | 0.2233 | 0.1850 | 0.4569 | 0.2634 | 0.4344 | 0.4569 | 0.2112 |
| 9.2696 | 8.0 | 344 | 9.1533 | 0.2047 | 0.4849 | 0.2495 | 0.6158 | 0.3670 | 0.2186 | 0.1812 | 0.4569 | 0.2595 | 0.4146 | 0.4569 | 0.2077 |
| 8.2669 | 9.0 | 387 | 9.1187 | 0.2009 | 0.4940 | 0.2492 | 0.6181 | 0.3788 | 0.2267 | 0.1838 | 0.4784 | 0.2656 | 0.4212 | 0.4784 | 0.2233 |
| 8.0241 | 10.0 | 430 | 9.0960 | 0.1988 | 0.5060 | 0.2520 | 0.6181 | 0.3893 | 0.2361 | 0.1818 | 0.4914 | 0.2654 | 0.4127 | 0.4914 | 0.2307 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Model tree for g-assismoraes/deberta-semeval25_EN08_WAR_fold2
Base model
microsoft/deberta-v3-base