File size: 10,928 Bytes
7f37159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc5e4e
7f37159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc5e4e
7f37159
6fc5e4e
7f37159
 
 
 
 
 
6fc5e4e
 
 
 
 
 
 
7f37159
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import argparse
import json
from pathlib import Path

import jax
import jax.numpy as jnp
import numpy as np
import orbax.checkpoint as ocp
from safetensors.flax import save_file
from tqdm import tqdm

SIGLIP_PREFIX = "SigLiPFromPatches_0/siglip_encoder"


def flatten(x: np.ndarray, start: int = 0, end: int = -1):
    if start < 0:
        start += x.ndim
    if end < 0:
        end += x.ndim
    new_shape = x.shape[:start] + (-1,) + x.shape[end + 1 :]
    return x.reshape(new_shape)


def unflatten(x: np.ndarray, dim: int, sizes: tuple[int, ...]):
    new_shape = x.shape[:dim] + tuple(sizes) + x.shape[dim + 1 :]
    return x.reshape(new_shape)


# correct quantization parameters mean quantization error = 0 (or close to 0)
def check_groups(groups: np.ndarray, scales: np.ndarray, dim: int):
    # groups: (a, b, c, 32, d, e, f)
    # scales: (a, b, c,  1, d, e, f)
    inv_scale = 1.0 / scales.clip(1e-12)
    q_group = np.round(groups * inv_scale)
    max_diff = np.abs(q_group * scales - groups).max(dim, keepdims=True)
    return max_diff < 1e-6, max_diff


def find_scales(w: np.ndarray, dim: int):
    w = unflatten(w, dim, (-1, 32))
    group_range = w.max(dim + 1, keepdims=True) - w.min(dim + 1, keepdims=True)

    scales = np.zeros_like(group_range)
    for q in range(15, 0, -1):
        try_scale = group_range / q
        ok, _ = check_groups(w, try_scale, dim + 1)
        scales[ok] = try_scale[ok]

    ok, _ = check_groups(w, scales, dim + 1)
    assert ok.all()

    return scales.squeeze(dim + 1)


def convert_siglip(params, num_layers: int):
    state_dict = dict()

    def convert_layer(prefix: str, layer: dict[str, np.ndarray]):
        bias = layer["bias"]

        if "kernel" in layer:
            w = layer["kernel"]
            if w.ndim == 2:  # linear layer
                w = w.T

            elif w.ndim == 3:  # attn projection
                # qkv projection - (dim, num_heads, head_dim)
                if bias.ndim == 2:
                    w = flatten(w, 1, 2).T
                    bias = bias.reshape(-1)

                # o projection - (num_heads, head_dim, dim)
                elif bias.ndim == 1:
                    w = flatten(w, 0, 1).T

            elif w.ndim == 4:  # conv2d layer
                w = w.transpose(3, 2, 0, 1)

            else:
                raise RuntimeError(f"Unsupported {w.shape=}")

        elif "scale" in layer:  # layer norm
            w = layer["scale"]

        else:
            raise RuntimeError

        state_dict[f"{prefix}weight"] = w
        state_dict[f"{prefix}bias"] = bias

    convert_layer("embeddings.patch_embedding.", params[f"{SIGLIP_PREFIX}/embedding"])
    state_dict["embeddings.position_embedding.weight"] = params[SIGLIP_PREFIX]["pos_embedding"].squeeze(0)
    convert_layer("post_layernorm.", params[f"{SIGLIP_PREFIX}/Transformer/encoder_norm"])

    for layer_idx in range(num_layers):
        prefix = f"encoder.layers.{layer_idx}."
        layer_prefix = f"{SIGLIP_PREFIX}/Transformer/encoderblock_{layer_idx}/"

        convert_layer(f"{prefix}layer_norm1.", params[f"{layer_prefix}LayerNorm_0"])
        convert_layer(f"{prefix}layer_norm2.", params[f"{layer_prefix}LayerNorm_1"])

        attn_prefix = f"{layer_prefix}MultiHeadDotProductAttention_0/"
        convert_layer(f"{prefix}self_attn.q_proj.", params[f"{attn_prefix}query"])
        convert_layer(f"{prefix}self_attn.k_proj.", params[f"{attn_prefix}key"])
        convert_layer(f"{prefix}self_attn.v_proj.", params[f"{attn_prefix}value"])
        convert_layer(f"{prefix}self_attn.out_proj.", params[f"{attn_prefix}out"])

        mlp_prefix = f"{layer_prefix}MlpBlock_0/"
        convert_layer(f"{prefix}mlp.fc1.", params[f"{mlp_prefix}Dense_0"])
        convert_layer(f"{prefix}mlp.fc2.", params[f"{mlp_prefix}Dense_1"])

    return state_dict


# convert to HF format first, then apply quantization
def convert_to_hf(path: Path):
    path = path.absolute()  # orbax only works with absolute path
    ckpt = ocp.StandardCheckpointer()
    metadata = dict(ckpt.metadata(path))
    metadata = jax.tree.map(ocp.utils.to_shape_dtype_struct, metadata)

    num_layers = num_siglip_layers = 0
    while f"transformer/layer_{num_layers}/attn/_key_norm" in metadata:
        num_layers += 1
    while f"{SIGLIP_PREFIX}/Transformer/encoderblock_{num_siglip_layers}/LayerNorm_0" in metadata:
        num_siglip_layers += 1
    print(f"{num_layers=}")
    print(f"{num_siglip_layers=}")

    # NOTE: all gemma3 models use tied embeddings, even for the 27B version.
    params = ckpt.restore(path)
    state_dict = dict()

    if num_siglip_layers > 0:
        # HF append unused tokens for no reason???
        embed = params["transformer/embedder"]["input_embedding"]
        params["transformer/embedder"]["input_embedding"] = np.pad(embed, ((0, 64), (0, 0)))
        gemma_prefix = "language_model."

        prefix = "multi_modal_projector.mm_"
        jax_prefix = "transformer/embedder/"
        state_dict[f"{prefix}input_projection_weight"] = params[f"{jax_prefix}mm_input_projection"]["w"]
        state_dict[f"{prefix}soft_emb_norm.weight"] = params[f"{jax_prefix}mm_soft_embedding_norm"]["scale"]

    else:
        gemma_prefix = ""

    state_dict[f"{gemma_prefix}model.embed_tokens.weight"] = params["transformer/embedder"]["input_embedding"]
    state_dict[f"{gemma_prefix}model.norm.weight"] = params["transformer/final_norm"]["scale"]

    yield state_dict

    for layer_idx in range(num_layers):
        jax_prefix = f"transformer/layer_{layer_idx}/"

        state_dict = dict()
        prefix = f"{gemma_prefix}model.layers.{layer_idx}."
        state_dict[f"{prefix}input_layernorm.weight"] = params[f"{jax_prefix}pre_attention_norm"]["scale"]
        state_dict[f"{prefix}post_attention_layernorm.weight"] = params[f"{jax_prefix}post_attention_norm"]["scale"]
        state_dict[f"{prefix}pre_feedforward_layernorm.weight"] = params[f"{jax_prefix}pre_ffw_norm"]["scale"]
        state_dict[f"{prefix}post_feedforward_layernorm.weight"] = params[f"{jax_prefix}post_ffw_norm"]["scale"]

        prefix = f"{gemma_prefix}model.layers.{layer_idx}.self_attn."
        jax_prefix = f"transformer/layer_{layer_idx}/attn/"
        state_dict[f"{prefix}q_norm.weight"] = params[f"{jax_prefix}_query_norm"]["scale"]
        state_dict[f"{prefix}k_norm.weight"] = params[f"{jax_prefix}_key_norm"]["scale"]

        # (num_heads, hidden_size, head_dim) -> (num_heads * head_dim, hidden_size)
        state_dict[f"{prefix}q_proj.weight"] = flatten(params[f"{jax_prefix}q_einsum"]["w"].transpose(0, 2, 1), end=1)
        state_dict[f"{prefix}k_proj.weight"] = flatten(
            params[f"{jax_prefix}kv_einsum"]["w"][0].transpose(0, 2, 1), end=1
        )
        state_dict[f"{prefix}v_proj.weight"] = flatten(
            params[f"{jax_prefix}kv_einsum"]["w"][1].transpose(0, 2, 1), end=1
        )

        # (num_heads, head_dim, hidden_size) -> (hidden_size, num_heads * head_dim)
        state_dict[f"{prefix}o_proj.weight"] = flatten(params[f"{jax_prefix}attn_vec_einsum"]["w"], end=1).T

        prefix = f"{gemma_prefix}model.layers.{layer_idx}.mlp."
        jax_prefix = f"transformer/layer_{layer_idx}/mlp/"
        state_dict[f"{prefix}gate_proj.weight"] = params[f"{jax_prefix}gating_einsum"]["w"][0]
        state_dict[f"{prefix}up_proj.weight"] = params[f"{jax_prefix}gating_einsum"]["w"][1]
        state_dict[f"{prefix}down_proj.weight"] = params[f"{jax_prefix}linear"]["w"].T

        yield state_dict

    # vision tower
    if num_siglip_layers > 0:
        siglip_state_dict = convert_siglip(params, num_siglip_layers)
        for k, v in siglip_state_dict.items():
            state_dict[f"vision_tower.vision_model.{k}"] = v
        yield state_dict


def convert_awq(state_dict: dict[str, np.ndarray]):
    awq_state_dict = dict()

    for k, v in state_dict.items():
        if (
            k.endswith("model.embed_tokens.weight")  # AWQ doesn't support INT4 embeddings
            or k.startswith(("vision_tower", "multi_modal_projector"))  # vision tower is not quantized
            or v.ndim == 1
        ):
            awq_state_dict[k] = v.astype(jnp.bfloat16)
            continue

        assert v.ndim == 2
        v = v.T  # AWQ transpose the weight

        K, N = v.shape
        scales = find_scales(v, dim=0)  # (K/32, N)
        inv_scale = 1 / scales.clip(1e-12)
        qweight = np.round(v.reshape(K // 32, 32, N) * inv_scale[:, None])

        # AWQ is actually UINT4 (instead of INT4)
        # hence, we will shift qweight up by 8 (even though Google AQT only uses [-7,7])
        # and set zero_point = 8
        qweight = (qweight + 8).astype(np.uint32)

        # AWQ pack 8 int4 into UINT32 in the following layout (from high bits to low bits)
        # [7 5 3 1 6 4 2 0] along the 2nd dim
        qweight = qweight.reshape(K, N // 8, 8)
        qweight_packed = (
            (qweight[..., 7] << (7 * 4))
            | (qweight[..., 5] << (6 * 4))
            | (qweight[..., 3] << (5 * 4))
            | (qweight[..., 1] << (4 * 4))
            | (qweight[..., 6] << (3 * 4))
            | (qweight[..., 4] << (2 * 4))
            | (qweight[..., 2] << (1 * 4))
            | (qweight[..., 0] << (0 * 4))
        )
        qweight_packed = qweight_packed.view(np.int32).reshape(K, N // 8)

        prefix = k.removesuffix(".weight")
        awq_state_dict[f"{prefix}.qweight"] = qweight_packed
        awq_state_dict[f"{prefix}.qzeros"] = np.full((K // 32, N // 8), 0x8888_8888, dtype=np.uint32).view(np.int32)
        awq_state_dict[f"{prefix}.scales"] = scales.astype(jnp.bfloat16)

    return awq_state_dict


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ckpt_dir", required=True, type=Path)
    parser.add_argument("--save_dir", required=True, type=Path)
    args = parser.parse_args()

    args.save_dir.mkdir(parents=True, exist_ok=True)

    total_size = 0
    weight_map = dict()

    state_dict = dict()
    size = 0
    shard_idx = 0
    filename = f"model-{shard_idx + 1:05d}.safetensors"
    for sub_state_dict in tqdm(convert_to_hf(args.ckpt_dir)):
        sub_state_dict = convert_awq(sub_state_dict)
        new_size = sum(v.nbytes for v in sub_state_dict.values())

        if size + new_size > 5e9:
            save_file(state_dict, args.save_dir / filename)
            state_dict = dict()
            size = 0
            shard_idx += 1
            filename = f"model-{shard_idx + 1:05d}.safetensors"

        # assume that new_size < 5e9
        size += new_size
        total_size += new_size
        for k, v in sub_state_dict.items():
            state_dict[k] = v
            weight_map[k] = filename

    save_file(state_dict, args.save_dir / filename)
    json.dump(
        dict(metadata=dict(total_size=total_size), weight_map=weight_map),
        open(args.save_dir / "model.safetensors.index.json", "w"),
    )