--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8622 - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: What is the aging management process for concrete structures in nuclear power plants? sentences: - Loss of material (spalling, scaling) and cracking due to freeze-thaw is a significant consideration in the aging management of concrete used for structural support and water retaining boundaries in nuclear power plants. - The NRC requires thorough inspections of various reactor components to ensure compliance with regulatory safety standards. - The applicability of fuel fragmentation and relocation models considering the full set of experimental test data presently available and higher fuel burnups being proposed in WCAP-18850-P. - source_sentence: control rod sequence during reactor startup sentences: - With the RWM inoperable during a reactor startup, the operator is still capable of enforcing the prescribed control rod sequence. However, the overall reliability is reduced because a single operator error can result in violating the control rod sequence. - With the RWM inoperable during a reactor shutdown, the operator is still capable of enforcing the prescribed control rod sequence. - Potential ecological impacts during aquifer restoration will be SMALL, since surface disturbing activities will be limited. Potential impacts associated with aquifer restoration activities will include vegetation and habitat alteration due to the response and cleanup of potential spills, noxious weeds, wildlife mortality from vehicle collisions and displacement due to noise, dust, and human/mechanical presence. Potential impacts are expected to be less than during operation due to a smaller workforce and decreased traffic. - source_sentence: What measurement units are used for reactor coolant temperatures? sentences: - The coolant temperatures in the reactors are measured in degrees Celsius (°C). - The reports frequently summarize operational data over time spans such as weeks and months. - 'MDA: Minimum Detectable Activity refers to the lowest quantity of radioactive material that can be reliably detected by a particular measurement method.' - source_sentence: The NRC mandates specific designs for the safety baskets in boiling water reactors to ensure optimal performance. sentences: - COBRA-FLX is a computer code developed for the prediction of critical heat flux (CHF) in light water reactor thermal-hydraulic systems, and it has been validated against a wide range of experimental data to ensure its accuracy. - Figure B2-5 presents the schematic of the BWR 81-Assembly Basket, which is essential for the containment and organization of nuclear fuel assemblies. - The arrangement of different materials in a reactor core affects the thermal efficiency greatly, especially under high-pressure conditions. - source_sentence: boric acid solution in nuclear reactors sentences: - A temperature sensor provides temperature measurement of each tank's contents. Temperature indication is provided as well as high and low temperature alarms which are indicated on the main control board. - The calculated dose values at different locations are essential for ensuring compliance with safety standards. - The concentration of boric acid solution in storage is maintained between 4 and 4.4 percent by weight. Periodic manual sampling and corrective action, if necessary, assures that tanks are maintained. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on BAAI/bge-base-en-v1.5 results: - task: type: triplet name: Triplet dataset: name: validation type: validation metrics: - type: cosine_accuracy value: 0.9373840689659119 name: Cosine Accuracy --- # SentenceTransformer based on BAAI/bge-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'boric acid solution in nuclear reactors', 'The concentration of boric acid solution in storage is maintained between 4 and 4.4 percent by weight. Periodic manual sampling and corrective action, if necessary, assures that tanks are maintained.', "A temperature sensor provides temperature measurement of each tank's contents. Temperature indication is provided as well as high and low temperature alarms which are indicated on the main control board.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `validation` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.9374** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 8,622 training samples * Columns: sentence_0, sentence_1, and sentence_2 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:---------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | The NRC mandates monitoring and calibration of voltage outputs during reactor startup procedures. | Simulates pressing GEN FIELD FLASH pushbutton until Generator voltage stops rising. (GENERATOR LINE VOLTS should indicate ~260V). | Operator reads the Note and continues. | | What are the environmental impacts of nuclear facilities during decommissioning? | The Environmental Impacts Comparison Summary provides a detailed analysis of various impact areas associated with the proposed action compared to the termination of operations and decommissioning of nuclear facilities. | The report outlines the thermal efficiency of natural gas combined cycle (NGCC) power plants, which can influence operational costs and the decision-making process for future energy projects. | | ECCS signal path | The ECCS/NSSSS Signal Path is crucial for the timely activation of emergency core cooling systems to prevent overheating of the reactor core during an accident. | The integration of signal pathways within reactor control systems ensures effective monitoring and response capability, which is essential for maintaining safety standards in nuclear operations. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 5 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | validation_cosine_accuracy | |:------:|:----:|:-------------:|:--------------------------:| | 0.7407 | 200 | - | 0.9276 | | 1.0 | 270 | - | 0.9309 | | 1.4815 | 400 | - | 0.9314 | | 1.8519 | 500 | 0.5662 | - | | 2.0 | 540 | - | 0.9355 | | 2.2222 | 600 | - | 0.9355 | | 2.9630 | 800 | - | 0.9374 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.2.2 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```