File size: 13,630 Bytes
427561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from functools import partial
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from transformers.utils import cached_file
from .smarties_config import SMARTIESConfig
from functools import partial
import numpy as np
from timm.models.vision_transformer import Block
import os 
import yaml

class SpectrumRangeProjection(nn.Module):
    """Patch Embedding of a sensor without patchify"""
    def __init__(
            self,
            spectral_range,
            spectrum_spec,
            patch_size,
            embed_dim,
            bias=True
    ):
        super().__init__()
        self.spectral_range = spectral_range
        self.name = spectrum_spec['name']
        self.min_wavelength = spectrum_spec['min_wavelength']
        self.max_wavelength = spectrum_spec['max_wavelength']
        self.sensors = spectrum_spec['sensors']
        self.nb_pixels = patch_size**2
        self.proj = nn.Linear(self.nb_pixels, embed_dim, bias=bias)
    
    def forward(self, x):
        return self.proj(x.view(-1, self.nb_pixels)) 

class SpectrumRangeProjectionAvg(nn.Module):
    """Patch Embedding of a sensor without patchify"""
    def __init__(
            self,
            spectrum_projections,
            spectrum_spec,
            embed_dim
    ):
        super().__init__()
        self.min_wavelength = spectrum_spec['min_wavelength']
        self.max_wavelength = spectrum_spec['max_wavelength']
        self.central_lambda = 0.5*(float(self.min_wavelength) + float(self.max_wavelength))
        self.spectrum_projections = spectrum_projections
        self.weights = []
        for spectrum_proj in self.spectrum_projections:
            central_lambda = 0.5*(float(spectrum_proj.min_wavelength) + float(spectrum_proj.max_wavelength))
            self.weights.append(abs(self.central_lambda-central_lambda))
        self.weights = np.array(self.weights) / sum(self.weights)
        self.embed_dim = embed_dim
    
    def forward(self, x):
        out = 0. #torch.zeros((len(x),self.embed_dim))
        for i, spectrum_proj in enumerate(self.spectrum_projections):
            out += spectrum_proj(x) * self.weights[i]
        return out
    

class SpectrumAwareProjection(nn.Module):
    """Patch Embedding of a sensor without patchify"""
    def __init__(
            self,
            spectrum_specs,
            patch_size,
            embed_dim,
            bias=True
    ):
        super().__init__()
        self.nb_pixels = patch_size**2
    
        self.spectrum_embeds = torch.nn.ModuleList()
        for spectral_range in sorted(spectrum_specs,key=lambda key:spectrum_specs[key]['projection_idx']):
            if ((spectrum_specs[spectral_range]['projection_idx'] != -1) and (len(spectrum_specs[spectral_range]['agg_projections']) == 0)) :
                self.spectrum_embeds.append(SpectrumRangeProjection(
                    spectral_range, spectrum_specs[spectral_range], patch_size, embed_dim
                ))

        for spectral_range in sorted(spectrum_specs,key=lambda key:spectrum_specs[key]['projection_idx']): 
            if ((spectrum_specs[spectral_range]['projection_idx'] != -1) and (len(spectrum_specs[spectral_range]['agg_projections']) > 0)):
                self.spectrum_embeds.append(
                    SpectrumRangeProjectionAvg(
                        [self.spectrum_embeds[agg_proj_idx] for agg_proj_idx in spectrum_specs[spectral_range]['agg_projections']], 
                        spectrum_specs[spectral_range],
                        embed_dim))
                
    def forward(self, x, projection_idx):
        return self.spectrum_embeds[projection_idx](x)

# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=float)
    grid_w = np.arange(grid_size, dtype=float)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=float)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb

def get_dtype(mixed_precision):
    if mixed_precision == 'no':
        return torch.float32
    elif mixed_precision == 'bf16':
        return torch.bfloat16
    elif mixed_precision == 'fp16':
        return torch.float16
    else:
        raise NotImplementedError

class SMARTIESHF(PreTrainedModel):
    config_class = SMARTIESConfig
    def __init__(self, config: SMARTIESConfig):
        super().__init__(config)
        try:
            if config.spectrum_specs is None:
                spectrum_path = cached_file(
                    config.name_or_path, 
                    "spectrum_specs.yaml"
                )
                with open(spectrum_path, "r") as f:
                    config.spectrum_specs = yaml.safe_load(f)
        except Exception as e:
                raise RuntimeError(
                "spectrum_specs couldn't be loaded from spectrum_specs.yaml. " \
                "Please load yaml file yourself and provide the argument spectrum_specs with the loaded file."
            ) from e
        self.model_dtype = get_dtype(config.mixed_precision)
        self.embed_dim = config.embed_dim
        self.decoder_embed_dim = config.decoder_embed_dim
        self.projection_conversion = {i: config.spectrum_specs[i]['projection_idx'] for i in config.spectrum_specs}
        self.sensor_band_specs = {
            'S2': [
                'aerosol', 
                'blue_1', 
                'green_2', 
                'red_2', 
                'red_edge_1', 
                'red_edge_2', 
                'near_infrared_2', 
                'near_infrared_1', 
                'near_infrared_3', 
                'short_wave_infrared_1', 
                'short_wave_infrared_3', 
                'short_wave_infrared_4'
            ],
            'S1': [
                'microwave_1', 
                'microwave_2'
            ],
            'RGB': [
                'red_1', 
                'green_1', 
                'blue_3'
            ]
        }
        self.sensor_projection_specs = {}
        for sensor_name in self.sensor_band_specs:
            self.sensor_projection_specs[sensor_name] = np.array(
                [self.projection_conversion[i] for i in self.sensor_band_specs[sensor_name]])

        self.patch_size = config.patch_size
        self.pos_drop = nn.Dropout(p=config.pos_drop_rate)
        self.nb_patch_length = int(config.img_size / self.patch_size)
        self.num_patches = self.nb_patch_length**2

        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, self.embed_dim), requires_grad=False)  # fixed sin-cos embedding

        self.spectrum_projection = SpectrumAwareProjection(
            spectrum_specs=config.spectrum_specs,
            patch_size=self.patch_size,
            embed_dim=self.embed_dim
        )

        pos_embed = get_2d_sincos_pos_embed(
            self.pos_embed.shape[-1],
            self.nb_patch_length,
            cls_token=True,
        )
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
        self.projection_scaler = 12
        self.norm_layer = partial(nn.LayerNorm, eps=config.norm_layer_eps)

        self.blocks = nn.ModuleList([
            Block(self.embed_dim, config.num_heads, config.mlp_ratio, qkv_bias=config.qkv_bias, norm_layer=self.norm_layer)
            for i in range(config.depth)])
        self.norm = self.norm_layer(self.embed_dim)
        self.global_pool = config.global_pool
        if self.global_pool:
            self.fc_norm = self.norm_layer(self.embed_dim)

        # decoder specifics
        self.decoder_embed = nn.Linear(self.embed_dim, self.decoder_embed_dim, bias=True)

        self.mask_token = nn.Parameter(torch.zeros(1, 1, self.decoder_embed_dim))

        self.decoder_pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, self.decoder_embed_dim), requires_grad=False)  # fixed sin-cos embedding
        self.projection_scaler = 12

        self.decoder_blocks = nn.ModuleList([
            Block(self.decoder_embed_dim, config.decoder_num_heads, config.mlp_ratio, qkv_bias=True, norm_layer=self.norm_layer)
            for i in range(config.decoder_depth)])

        self.decoder_norm = self.norm_layer(self.decoder_embed_dim)
        self.decoder_preds = torch.nn.ModuleList()
        for band_idx in sorted(config.spectrum_specs, key=lambda key: config.spectrum_specs[key]['projection_idx']):
            if ((config.spectrum_specs[band_idx]['projection_idx'] != -1) and (len(config.spectrum_specs[band_idx]['agg_projections']) == 0)):
                self.decoder_preds.append(nn.Linear(self.decoder_embed_dim, self.patch_size**2, bias=True))
    
    def tensor_patchify(self, imgs):
        """
        imgs: (N, nb_bands, H, W)
        x: (N, L, patch_size**2 *nb_bands)
        """
        p = self.patch_size
        assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0

        h = w = imgs.shape[2] // p
        x = imgs.reshape(shape=(imgs.shape[0], imgs.shape[1], h, p, w, p))
        x = torch.einsum('nchpwq->nhwpqc', x)
        x = x.reshape(shape=(imgs.shape[0], h, w, p, p, imgs.shape[1])).permute(0,1,2,5,3,4)
        return x
    
    def forward_encoder(self, imgs, proj_indices, is_patchify, all_tokens):
        if is_patchify:
            img_patches = self.tensor_patchify(imgs)
        else:
            img_patches = imgs
        B, nb_patch_h, nb_patch_w, nb_bands, _, _ = img_patches.shape
        device = img_patches.device

        img_spectrum_embeds = torch.zeros((B, nb_patch_h, nb_patch_w, nb_bands, self.embed_dim), device=device, dtype=self.model_dtype)

        for projection_idx in torch.unbind(torch.unique(proj_indices)):
            mask = (proj_indices==projection_idx)
            img_spectrum_embeds[mask] = self.spectrum_projection(img_patches[mask], projection_idx) 

        img_embeddings = self.projection_scaler*img_spectrum_embeds.mean(dim=3)
        img_embeddings = img_embeddings.reshape(-1,nb_patch_h*nb_patch_w,self.embed_dim)

        cls_tokens = self.cls_token.expand(
            B, -1, -1
        )
        x = torch.cat((cls_tokens, img_embeddings), dim=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        if all_tokens:
            return self.norm(x) # B, L, embed_dim (L=1+patch_size**2)

        if self.global_pool:
            x = x[:, 1:, :].mean(dim=1)
            outcome = self.fc_norm(x)
        else:
            x = self.norm(x)
            outcome = x[:, 0]

        return outcome

    def forward(self, imgs, is_patchify=True, sensor_type='S2', bands=None, proj_indices=None, all_tokens=False):
        if proj_indices is None:
            if bands is None:
                assert sensor_type in self.sensor_band_specs.keys(), f"Sensor type {sensor_type} not recognized. Available types: {list(self.sensor_band_specs.keys())}. Otherwise provide bands."
                proj_indices = self.sensor_projection_specs[sensor_type]
            else:
                proj_indices = []
                for i in bands:
                    if i in self.projection_conversion.keys():
                        proj_indices.append(self.projection_conversion[i])
                assert len(proj_indices) > 0, \
                "No valid bands provided. Please check the bands to be aligned with the spectrum_specs definition \
                (default version can be accessed at https://github.com/gsumbul/SMARTIES/blob/main/config/electromagnetic_spectrum.yaml)."
            proj_indices = np.array(proj_indices)
            proj_indices = torch.as_tensor(np.tile(proj_indices.reshape(
                1,1,1,-1), (imgs.shape[0], self.nb_patch_length, self.nb_patch_length, 1)).astype(np.int32), device=imgs.device)
            
        return self.forward_encoder(imgs, proj_indices, is_patchify=is_patchify, all_tokens=all_tokens)