File size: 2,242 Bytes
8ae99e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- allocine
model-index:
- name: model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on the allocine dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0254
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4388 | 1.0 | 157 | 2.1637 |
| 2.288 | 2.0 | 314 | 2.1697 |
| 2.2444 | 3.0 | 471 | 2.1150 |
| 2.2166 | 4.0 | 628 | 2.0906 |
| 2.1754 | 5.0 | 785 | 2.0899 |
| 2.1604 | 6.0 | 942 | 2.0797 |
| 2.1299 | 7.0 | 1099 | 2.0589 |
| 2.1195 | 8.0 | 1256 | 2.0178 |
| 2.1258 | 9.0 | 1413 | 2.0348 |
| 2.1071 | 10.0 | 1570 | 2.0090 |
| 2.0888 | 11.0 | 1727 | 2.0047 |
| 2.0792 | 12.0 | 1884 | 2.0219 |
| 2.0687 | 13.0 | 2041 | 2.0080 |
| 2.0527 | 14.0 | 2198 | 2.0298 |
| 2.0589 | 15.0 | 2355 | 1.9869 |
| 2.0518 | 16.0 | 2512 | 2.0152 |
| 2.0409 | 17.0 | 2669 | 2.0247 |
| 2.0507 | 18.0 | 2826 | 1.9928 |
| 2.0366 | 19.0 | 2983 | 2.0175 |
| 2.0386 | 20.0 | 3140 | 1.9487 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|