--- license: mit datasets: - mozilla-foundation/common_voice_11_0 language: - fa metrics: - wer base_model: - openai/whisper-tiny pipeline_tag: automatic-speech-recognition library_name: transformers --- how to use the model in colab: #start pip install torch torchaudio transformers librosa gradio from transformers import WhisperProcessor, WhisperForConditionalGeneration import torch #Load your fine-tuned Whisper model and processor model_name = "hackergeek98/tinyyyy_whisper" processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) #Force the model to transcribe in Persian model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe") #Move model to GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) import librosa def transcribe_audio(audio_file): # Load audio file using librosa (supports multiple formats) audio_data, sampling_rate = librosa.load(audio_file, sr=16000) # Resample to 16kHz # Preprocess the audio inputs = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device) # Generate transcription with torch.no_grad(): predicted_ids = model.generate(inputs) # Decode the transcription transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription from google.colab import files #Upload an audio file uploaded = files.upload() audio_file = list(uploaded.keys())[0] #Transcribe the audio transcription = transcribe_audio(audio_file) print("Transcription:", transcription)