--- license: mit datasets: - mozilla-foundation/common_voice_11_0 language: - fa metrics: - wer base_model: - openai/whisper-large-v3-turbo pipeline_tag: automatic-speech-recognition library_name: transformers tags: - medical --- training loss: 0.013100 validation loss: 0.043175 num. epoch: 1 ## how to use the model in colab: # Install required packages !pip install torch torchaudio transformers pydub google-colab import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from pydub import AudioSegment import os from google.colab import files # Load the model and processor model_id = "hackergeek98/whisper-persian-turbooo" device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device) processor = AutoProcessor.from_pretrained(model_id) # Create pipeline whisper_pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1 ) # Convert audio to WAV format def convert_to_wav(audio_path): audio = AudioSegment.from_file(audio_path) wav_path = "converted_audio.wav" audio.export(wav_path, format="wav") return wav_path # Split long audio into chunks def split_audio(audio_path, chunk_length_ms=30000): # Default: 30 sec per chunk audio = AudioSegment.from_wav(audio_path) chunks = [audio[i:i+chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)] chunk_paths = [] for i, chunk in enumerate(chunks): chunk_path = f"chunk_{i}.wav" chunk.export(chunk_path, format="wav") chunk_paths.append(chunk_path) return chunk_paths # Transcribe a long audio file def transcribe_long_audio(audio_path): wav_path = convert_to_wav(audio_path) chunk_paths = split_audio(wav_path) transcription = "" for chunk in chunk_paths: result = whisper_pipe(chunk) transcription += result["text"] + "\n" os.remove(chunk) # Remove processed chunk os.remove(wav_path) # Cleanup original file # Save transcription to a text file text_path = "transcription.txt" with open(text_path, "w") as f: f.write(transcription) return text_path # Upload and process audio in Colab uploaded = files.upload() audio_file = list(uploaded.keys())[0] transcription_file = transcribe_long_audio(audio_file) # Download the transcription file files.download(transcription_file)