Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1298 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: sentence-transformers/all-distilroberta-v1
|
| 3 |
+
library_name: sentence-transformers
|
| 4 |
+
pipeline_tag: sentence-similarity
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- generated_from_trainer
|
| 10 |
+
- dataset_size:5817740
|
| 11 |
+
- loss:MaskedCachedMultipleNegativesRankingLoss
|
| 12 |
+
widget:
|
| 13 |
+
- source_sentence: Mathlib.Algebra.Group.Pointwise.Finset.Basic#679
|
| 14 |
+
sentences:
|
| 15 |
+
- instContinuousStarReal
|
| 16 |
+
- StrictOrderedSemiring.toMulPosStrictMono
|
| 17 |
+
- IsCancelAdd.toIsLeftCancelAdd
|
| 18 |
+
- source_sentence: Mathlib.Algebra.MvPolynomial.Degrees#315
|
| 19 |
+
sentences:
|
| 20 |
+
- Algebra.smul_def
|
| 21 |
+
- IsLocalMinOn.hasFDerivWithinAt_nonneg
|
| 22 |
+
- CategoryTheory.GlueData.t_fac
|
| 23 |
+
- source_sentence: Mathlib.Algebra.Group.Pointwise.Finset.Basic#679
|
| 24 |
+
sentences:
|
| 25 |
+
- eq_of_heq
|
| 26 |
+
- add_right_injective
|
| 27 |
+
- Summable.of_norm_bounded_eventually_nat
|
| 28 |
+
- source_sentence: Mathlib.Algebra.Polynomial.FieldDivision#94
|
| 29 |
+
sentences:
|
| 30 |
+
- Polynomial.coe_normUnit
|
| 31 |
+
- Nat.instCharZero
|
| 32 |
+
- Multiset.map_congr
|
| 33 |
+
- source_sentence: Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv#35
|
| 34 |
+
sentences:
|
| 35 |
+
- Nat.cast_zero
|
| 36 |
+
- Function.Injective.eq_iff
|
| 37 |
+
- HasDerivAt.clog
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
# SentenceTransformer based on sentence-transformers/all-distilroberta-v1
|
| 41 |
+
|
| 42 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 43 |
+
|
| 44 |
+
## Model Details
|
| 45 |
+
|
| 46 |
+
### Model Description
|
| 47 |
+
- **Model Type:** Sentence Transformer
|
| 48 |
+
- **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) <!-- at revision 842eaed40bee4d61673a81c92d5689a8fed7a09f -->
|
| 49 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 50 |
+
- **Output Dimensionality:** 768 tokens
|
| 51 |
+
- **Similarity Function:** Cosine Similarity
|
| 52 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 53 |
+
<!-- - **Language:** Unknown -->
|
| 54 |
+
<!-- - **License:** Unknown -->
|
| 55 |
+
|
| 56 |
+
### Model Sources
|
| 57 |
+
|
| 58 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 59 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 60 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 61 |
+
|
| 62 |
+
### Full Model Architecture
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
SentenceTransformer(
|
| 66 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
| 67 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 68 |
+
(2): Normalize()
|
| 69 |
+
)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## Usage
|
| 73 |
+
|
| 74 |
+
### Direct Usage (Sentence Transformers)
|
| 75 |
+
|
| 76 |
+
First install the Sentence Transformers library:
|
| 77 |
+
|
| 78 |
+
```bash
|
| 79 |
+
pip install -U sentence-transformers
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
Then you can load this model and run inference.
|
| 83 |
+
```python
|
| 84 |
+
from sentence_transformers import SentenceTransformer
|
| 85 |
+
|
| 86 |
+
# Download from the 🤗 Hub
|
| 87 |
+
model = SentenceTransformer("hanwenzhu/all-distilroberta-v1-lr2e-4-bs256-nneg3-ml-ne5-mar17")
|
| 88 |
+
# Run inference
|
| 89 |
+
sentences = [
|
| 90 |
+
'Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv#35',
|
| 91 |
+
'HasDerivAt.clog',
|
| 92 |
+
'Nat.cast_zero',
|
| 93 |
+
]
|
| 94 |
+
embeddings = model.encode(sentences)
|
| 95 |
+
print(embeddings.shape)
|
| 96 |
+
# [3, 768]
|
| 97 |
+
|
| 98 |
+
# Get the similarity scores for the embeddings
|
| 99 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 100 |
+
print(similarities.shape)
|
| 101 |
+
# [3, 3]
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
<!--
|
| 105 |
+
### Direct Usage (Transformers)
|
| 106 |
+
|
| 107 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 108 |
+
|
| 109 |
+
</details>
|
| 110 |
+
-->
|
| 111 |
+
|
| 112 |
+
<!--
|
| 113 |
+
### Downstream Usage (Sentence Transformers)
|
| 114 |
+
|
| 115 |
+
You can finetune this model on your own dataset.
|
| 116 |
+
|
| 117 |
+
<details><summary>Click to expand</summary>
|
| 118 |
+
|
| 119 |
+
</details>
|
| 120 |
+
-->
|
| 121 |
+
|
| 122 |
+
<!--
|
| 123 |
+
### Out-of-Scope Use
|
| 124 |
+
|
| 125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 126 |
+
-->
|
| 127 |
+
|
| 128 |
+
<!--
|
| 129 |
+
## Bias, Risks and Limitations
|
| 130 |
+
|
| 131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 132 |
+
-->
|
| 133 |
+
|
| 134 |
+
<!--
|
| 135 |
+
### Recommendations
|
| 136 |
+
|
| 137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 138 |
+
-->
|
| 139 |
+
|
| 140 |
+
## Training Details
|
| 141 |
+
|
| 142 |
+
### Training Dataset
|
| 143 |
+
|
| 144 |
+
#### Unnamed Dataset
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
* Size: 5,817,740 training samples
|
| 148 |
+
* Columns: <code>state_name</code> and <code>premise_name</code>
|
| 149 |
+
* Approximate statistics based on the first 1000 samples:
|
| 150 |
+
| | state_name | premise_name |
|
| 151 |
+
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 152 |
+
| type | string | string |
|
| 153 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 16.44 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.9 tokens</li><li>max: 50 tokens</li></ul> |
|
| 154 |
+
* Samples:
|
| 155 |
+
| state_name | premise_name |
|
| 156 |
+
|:----------------------------------------------|:-----------------------------------|
|
| 157 |
+
| <code>Mathlib.Algebra.Field.IsField#12</code> | <code>Classical.choose_spec</code> |
|
| 158 |
+
| <code>Mathlib.Algebra.Field.IsField#12</code> | <code>IsField.mul_comm</code> |
|
| 159 |
+
| <code>Mathlib.Algebra.Field.IsField#12</code> | <code>eq_of_heq</code> |
|
| 160 |
+
* Loss: <code>loss.MaskedCachedMultipleNegativesRankingLoss</code> with these parameters:
|
| 161 |
+
```json
|
| 162 |
+
{
|
| 163 |
+
"scale": 20.0,
|
| 164 |
+
"similarity_fct": "cos_sim"
|
| 165 |
+
}
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
### Evaluation Dataset
|
| 169 |
+
|
| 170 |
+
#### Unnamed Dataset
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
* Size: 1,959 evaluation samples
|
| 174 |
+
* Columns: <code>state_name</code> and <code>premise_name</code>
|
| 175 |
+
* Approximate statistics based on the first 1000 samples:
|
| 176 |
+
| | state_name | premise_name |
|
| 177 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 178 |
+
| type | string | string |
|
| 179 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 17.08 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.05 tokens</li><li>max: 31 tokens</li></ul> |
|
| 180 |
+
* Samples:
|
| 181 |
+
| state_name | premise_name |
|
| 182 |
+
|:-------------------------------------------------------------|:----------------------------------------------------------|
|
| 183 |
+
| <code>Mathlib.Algebra.Algebra.Hom#80</code> | <code>AlgHom.commutes</code> |
|
| 184 |
+
| <code>Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237</code> | <code>NonUnitalAlgHom.instNonUnitalAlgSemiHomClass</code> |
|
| 185 |
+
| <code>Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237</code> | <code>NonUnitalAlgebra.mem_top</code> |
|
| 186 |
+
* Loss: <code>loss.MaskedCachedMultipleNegativesRankingLoss</code> with these parameters:
|
| 187 |
+
```json
|
| 188 |
+
{
|
| 189 |
+
"scale": 20.0,
|
| 190 |
+
"similarity_fct": "cos_sim"
|
| 191 |
+
}
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
### Training Hyperparameters
|
| 195 |
+
#### Non-Default Hyperparameters
|
| 196 |
+
|
| 197 |
+
- `eval_strategy`: steps
|
| 198 |
+
- `per_device_train_batch_size`: 256
|
| 199 |
+
- `per_device_eval_batch_size`: 64
|
| 200 |
+
- `learning_rate`: 0.0002
|
| 201 |
+
- `num_train_epochs`: 5.0
|
| 202 |
+
- `lr_scheduler_type`: cosine
|
| 203 |
+
- `warmup_ratio`: 0.03
|
| 204 |
+
- `bf16`: True
|
| 205 |
+
- `dataloader_num_workers`: 4
|
| 206 |
+
- `resume_from_checkpoint`: /data/user_data/thomaszh/models/all-distilroberta-v1-lr2e-4-bs256-nneg3-ml-ne5/checkpoint-104604
|
| 207 |
+
|
| 208 |
+
#### All Hyperparameters
|
| 209 |
+
<details><summary>Click to expand</summary>
|
| 210 |
+
|
| 211 |
+
- `overwrite_output_dir`: False
|
| 212 |
+
- `do_predict`: False
|
| 213 |
+
- `eval_strategy`: steps
|
| 214 |
+
- `prediction_loss_only`: True
|
| 215 |
+
- `per_device_train_batch_size`: 256
|
| 216 |
+
- `per_device_eval_batch_size`: 64
|
| 217 |
+
- `per_gpu_train_batch_size`: None
|
| 218 |
+
- `per_gpu_eval_batch_size`: None
|
| 219 |
+
- `gradient_accumulation_steps`: 1
|
| 220 |
+
- `eval_accumulation_steps`: None
|
| 221 |
+
- `torch_empty_cache_steps`: None
|
| 222 |
+
- `learning_rate`: 0.0002
|
| 223 |
+
- `weight_decay`: 0.0
|
| 224 |
+
- `adam_beta1`: 0.9
|
| 225 |
+
- `adam_beta2`: 0.999
|
| 226 |
+
- `adam_epsilon`: 1e-08
|
| 227 |
+
- `max_grad_norm`: 1.0
|
| 228 |
+
- `num_train_epochs`: 5.0
|
| 229 |
+
- `max_steps`: -1
|
| 230 |
+
- `lr_scheduler_type`: cosine
|
| 231 |
+
- `lr_scheduler_kwargs`: {}
|
| 232 |
+
- `warmup_ratio`: 0.03
|
| 233 |
+
- `warmup_steps`: 0
|
| 234 |
+
- `log_level`: passive
|
| 235 |
+
- `log_level_replica`: warning
|
| 236 |
+
- `log_on_each_node`: True
|
| 237 |
+
- `logging_nan_inf_filter`: True
|
| 238 |
+
- `save_safetensors`: True
|
| 239 |
+
- `save_on_each_node`: False
|
| 240 |
+
- `save_only_model`: False
|
| 241 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 242 |
+
- `no_cuda`: False
|
| 243 |
+
- `use_cpu`: False
|
| 244 |
+
- `use_mps_device`: False
|
| 245 |
+
- `seed`: 42
|
| 246 |
+
- `data_seed`: None
|
| 247 |
+
- `jit_mode_eval`: False
|
| 248 |
+
- `use_ipex`: False
|
| 249 |
+
- `bf16`: True
|
| 250 |
+
- `fp16`: False
|
| 251 |
+
- `fp16_opt_level`: O1
|
| 252 |
+
- `half_precision_backend`: auto
|
| 253 |
+
- `bf16_full_eval`: False
|
| 254 |
+
- `fp16_full_eval`: False
|
| 255 |
+
- `tf32`: None
|
| 256 |
+
- `local_rank`: 0
|
| 257 |
+
- `ddp_backend`: None
|
| 258 |
+
- `tpu_num_cores`: None
|
| 259 |
+
- `tpu_metrics_debug`: False
|
| 260 |
+
- `debug`: []
|
| 261 |
+
- `dataloader_drop_last`: False
|
| 262 |
+
- `dataloader_num_workers`: 4
|
| 263 |
+
- `dataloader_prefetch_factor`: None
|
| 264 |
+
- `past_index`: -1
|
| 265 |
+
- `disable_tqdm`: False
|
| 266 |
+
- `remove_unused_columns`: True
|
| 267 |
+
- `label_names`: None
|
| 268 |
+
- `load_best_model_at_end`: False
|
| 269 |
+
- `ignore_data_skip`: False
|
| 270 |
+
- `fsdp`: []
|
| 271 |
+
- `fsdp_min_num_params`: 0
|
| 272 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 273 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 274 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 275 |
+
- `deepspeed`: None
|
| 276 |
+
- `label_smoothing_factor`: 0.0
|
| 277 |
+
- `optim`: adamw_torch
|
| 278 |
+
- `optim_args`: None
|
| 279 |
+
- `adafactor`: False
|
| 280 |
+
- `group_by_length`: False
|
| 281 |
+
- `length_column_name`: length
|
| 282 |
+
- `ddp_find_unused_parameters`: None
|
| 283 |
+
- `ddp_bucket_cap_mb`: None
|
| 284 |
+
- `ddp_broadcast_buffers`: False
|
| 285 |
+
- `dataloader_pin_memory`: True
|
| 286 |
+
- `dataloader_persistent_workers`: False
|
| 287 |
+
- `skip_memory_metrics`: True
|
| 288 |
+
- `use_legacy_prediction_loop`: False
|
| 289 |
+
- `push_to_hub`: False
|
| 290 |
+
- `resume_from_checkpoint`: /data/user_data/thomaszh/models/all-distilroberta-v1-lr2e-4-bs256-nneg3-ml-ne5/checkpoint-104604
|
| 291 |
+
- `hub_model_id`: None
|
| 292 |
+
- `hub_strategy`: every_save
|
| 293 |
+
- `hub_private_repo`: False
|
| 294 |
+
- `hub_always_push`: False
|
| 295 |
+
- `gradient_checkpointing`: False
|
| 296 |
+
- `gradient_checkpointing_kwargs`: None
|
| 297 |
+
- `include_inputs_for_metrics`: False
|
| 298 |
+
- `eval_do_concat_batches`: True
|
| 299 |
+
- `fp16_backend`: auto
|
| 300 |
+
- `push_to_hub_model_id`: None
|
| 301 |
+
- `push_to_hub_organization`: None
|
| 302 |
+
- `mp_parameters`:
|
| 303 |
+
- `auto_find_batch_size`: False
|
| 304 |
+
- `full_determinism`: False
|
| 305 |
+
- `torchdynamo`: None
|
| 306 |
+
- `ray_scope`: last
|
| 307 |
+
- `ddp_timeout`: 1800
|
| 308 |
+
- `torch_compile`: False
|
| 309 |
+
- `torch_compile_backend`: None
|
| 310 |
+
- `torch_compile_mode`: None
|
| 311 |
+
- `dispatch_batches`: None
|
| 312 |
+
- `split_batches`: None
|
| 313 |
+
- `include_tokens_per_second`: False
|
| 314 |
+
- `include_num_input_tokens_seen`: False
|
| 315 |
+
- `neftune_noise_alpha`: None
|
| 316 |
+
- `optim_target_modules`: None
|
| 317 |
+
- `batch_eval_metrics`: False
|
| 318 |
+
- `eval_on_start`: False
|
| 319 |
+
- `use_liger_kernel`: False
|
| 320 |
+
- `eval_use_gather_object`: False
|
| 321 |
+
- `batch_sampler`: batch_sampler
|
| 322 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 323 |
+
|
| 324 |
+
</details>
|
| 325 |
+
|
| 326 |
+
### Training Logs
|
| 327 |
+
<details><summary>Click to expand</summary>
|
| 328 |
+
|
| 329 |
+
| Epoch | Step | Training Loss | loss |
|
| 330 |
+
|:------:|:------:|:-------------:|:------:|
|
| 331 |
+
| 4.6031 | 104610 | 0.4939 | - |
|
| 332 |
+
| 4.6035 | 104620 | 0.4904 | - |
|
| 333 |
+
| 4.6040 | 104630 | 0.481 | - |
|
| 334 |
+
| 4.6044 | 104640 | 0.486 | - |
|
| 335 |
+
| 4.6049 | 104650 | 0.4596 | - |
|
| 336 |
+
| 4.6053 | 104660 | 0.4864 | - |
|
| 337 |
+
| 4.6057 | 104670 | 0.4577 | - |
|
| 338 |
+
| 4.6062 | 104680 | 0.4646 | - |
|
| 339 |
+
| 4.6066 | 104690 | 0.4478 | - |
|
| 340 |
+
| 4.6071 | 104700 | 0.4844 | - |
|
| 341 |
+
| 4.6075 | 104710 | 0.4836 | - |
|
| 342 |
+
| 4.6079 | 104720 | 0.4445 | - |
|
| 343 |
+
| 4.6084 | 104730 | 0.4883 | - |
|
| 344 |
+
| 4.6088 | 104740 | 0.5054 | - |
|
| 345 |
+
| 4.6093 | 104750 | 0.4992 | - |
|
| 346 |
+
| 4.6097 | 104760 | 0.4759 | - |
|
| 347 |
+
| 4.6101 | 104770 | 0.483 | - |
|
| 348 |
+
| 4.6106 | 104780 | 0.4668 | - |
|
| 349 |
+
| 4.6110 | 104790 | 0.4839 | - |
|
| 350 |
+
| 4.6115 | 104800 | 0.4426 | - |
|
| 351 |
+
| 4.6119 | 104810 | 0.4851 | - |
|
| 352 |
+
| 4.6123 | 104820 | 0.4837 | - |
|
| 353 |
+
| 4.6128 | 104830 | 0.4728 | - |
|
| 354 |
+
| 4.6132 | 104840 | 0.4796 | - |
|
| 355 |
+
| 4.6137 | 104850 | 0.4824 | - |
|
| 356 |
+
| 4.6141 | 104860 | 0.4948 | - |
|
| 357 |
+
| 4.6145 | 104870 | 0.4902 | - |
|
| 358 |
+
| 4.6150 | 104880 | 0.4565 | - |
|
| 359 |
+
| 4.6154 | 104890 | 0.5068 | - |
|
| 360 |
+
| 4.6159 | 104900 | 0.4881 | - |
|
| 361 |
+
| 4.6163 | 104910 | 0.5064 | - |
|
| 362 |
+
| 4.6167 | 104920 | 0.4877 | - |
|
| 363 |
+
| 4.6172 | 104930 | 0.498 | - |
|
| 364 |
+
| 4.6176 | 104940 | 0.478 | - |
|
| 365 |
+
| 4.6181 | 104950 | 0.4972 | - |
|
| 366 |
+
| 4.6185 | 104960 | 0.4654 | - |
|
| 367 |
+
| 4.6189 | 104970 | 0.4544 | - |
|
| 368 |
+
| 4.6194 | 104980 | 0.477 | - |
|
| 369 |
+
| 4.6198 | 104990 | 0.4957 | - |
|
| 370 |
+
| 4.6203 | 105000 | 0.4695 | - |
|
| 371 |
+
| 4.6207 | 105010 | 0.4927 | - |
|
| 372 |
+
| 4.6211 | 105020 | 0.4805 | - |
|
| 373 |
+
| 4.6216 | 105030 | 0.4929 | - |
|
| 374 |
+
| 4.6220 | 105040 | 0.4711 | - |
|
| 375 |
+
| 4.6225 | 105050 | 0.4814 | - |
|
| 376 |
+
| 4.6229 | 105060 | 0.464 | - |
|
| 377 |
+
| 4.6233 | 105070 | 0.4752 | - |
|
| 378 |
+
| 4.6238 | 105080 | 0.4609 | - |
|
| 379 |
+
| 4.6242 | 105090 | 0.4754 | - |
|
| 380 |
+
| 4.6247 | 105100 | 0.48 | - |
|
| 381 |
+
| 4.6251 | 105110 | 0.4587 | - |
|
| 382 |
+
| 4.6255 | 105120 | 0.4709 | - |
|
| 383 |
+
| 4.6260 | 105130 | 0.4775 | - |
|
| 384 |
+
| 4.6264 | 105140 | 0.4856 | - |
|
| 385 |
+
| 4.6269 | 105150 | 0.5094 | - |
|
| 386 |
+
| 4.6273 | 105160 | 0.4857 | - |
|
| 387 |
+
| 4.6277 | 105170 | 0.4826 | - |
|
| 388 |
+
| 4.6282 | 105180 | 0.4755 | - |
|
| 389 |
+
| 4.6286 | 105190 | 0.478 | - |
|
| 390 |
+
| 4.6291 | 105200 | 0.4653 | - |
|
| 391 |
+
| 4.6295 | 105210 | 0.4846 | - |
|
| 392 |
+
| 4.6299 | 105220 | 0.495 | - |
|
| 393 |
+
| 4.6304 | 105230 | 0.4818 | - |
|
| 394 |
+
| 4.6308 | 105240 | 0.4774 | - |
|
| 395 |
+
| 4.6313 | 105250 | 0.4653 | - |
|
| 396 |
+
| 4.6317 | 105260 | 0.4831 | - |
|
| 397 |
+
| 4.6321 | 105270 | 0.4669 | - |
|
| 398 |
+
| 4.6326 | 105280 | 0.487 | - |
|
| 399 |
+
| 4.6330 | 105290 | 0.4782 | - |
|
| 400 |
+
| 4.6335 | 105300 | 0.4856 | - |
|
| 401 |
+
| 4.6339 | 105310 | 0.4788 | - |
|
| 402 |
+
| 4.6343 | 105320 | 0.4645 | - |
|
| 403 |
+
| 4.6348 | 105330 | 0.4584 | - |
|
| 404 |
+
| 4.6352 | 105340 | 0.4794 | - |
|
| 405 |
+
| 4.6357 | 105350 | 0.4689 | - |
|
| 406 |
+
| 4.6361 | 105360 | 0.4987 | - |
|
| 407 |
+
| 4.6365 | 105370 | 0.4593 | - |
|
| 408 |
+
| 4.6370 | 105380 | 0.4912 | - |
|
| 409 |
+
| 4.6374 | 105390 | 0.468 | - |
|
| 410 |
+
| 4.6379 | 105400 | 0.487 | - |
|
| 411 |
+
| 4.6383 | 105410 | 0.4889 | - |
|
| 412 |
+
| 4.6387 | 105420 | 0.4561 | - |
|
| 413 |
+
| 4.6392 | 105430 | 0.4759 | - |
|
| 414 |
+
| 4.6396 | 105440 | 0.4686 | - |
|
| 415 |
+
| 4.6401 | 105450 | 0.4885 | - |
|
| 416 |
+
| 4.6405 | 105460 | 0.4705 | - |
|
| 417 |
+
| 4.6409 | 105470 | 0.4763 | - |
|
| 418 |
+
| 4.6414 | 105480 | 0.4794 | - |
|
| 419 |
+
| 4.6418 | 105490 | 0.4922 | - |
|
| 420 |
+
| 4.6423 | 105500 | 0.4693 | - |
|
| 421 |
+
| 4.6427 | 105510 | 0.4923 | - |
|
| 422 |
+
| 4.6431 | 105520 | 0.4856 | - |
|
| 423 |
+
| 4.6436 | 105530 | 0.4796 | - |
|
| 424 |
+
| 4.6440 | 105540 | 0.4914 | - |
|
| 425 |
+
| 4.6445 | 105550 | 0.4501 | - |
|
| 426 |
+
| 4.6449 | 105560 | 0.4848 | - |
|
| 427 |
+
| 4.6453 | 105570 | 0.478 | - |
|
| 428 |
+
| 4.6458 | 105580 | 0.4637 | - |
|
| 429 |
+
| 4.6462 | 105590 | 0.4796 | - |
|
| 430 |
+
| 4.6467 | 105600 | 0.4826 | - |
|
| 431 |
+
| 4.6471 | 105610 | 0.4781 | - |
|
| 432 |
+
| 4.6475 | 105620 | 0.4882 | - |
|
| 433 |
+
| 4.6480 | 105630 | 0.4964 | - |
|
| 434 |
+
| 4.6484 | 105640 | 0.4779 | - |
|
| 435 |
+
| 4.6489 | 105650 | 0.4701 | - |
|
| 436 |
+
| 4.6493 | 105660 | 0.4673 | - |
|
| 437 |
+
| 4.6497 | 105670 | 0.5103 | - |
|
| 438 |
+
| 4.6502 | 105680 | 0.4795 | - |
|
| 439 |
+
| 4.6506 | 105690 | 0.489 | - |
|
| 440 |
+
| 4.6511 | 105700 | 0.4653 | - |
|
| 441 |
+
| 4.6515 | 105710 | 0.4607 | - |
|
| 442 |
+
| 4.6519 | 105720 | 0.468 | - |
|
| 443 |
+
| 4.6524 | 105730 | 0.4719 | - |
|
| 444 |
+
| 4.6528 | 105740 | 0.4784 | - |
|
| 445 |
+
| 4.6529 | 105741 | - | 1.2566 |
|
| 446 |
+
| 4.6533 | 105750 | 0.4967 | - |
|
| 447 |
+
| 4.6537 | 105760 | 0.4744 | - |
|
| 448 |
+
| 4.6541 | 105770 | 0.4645 | - |
|
| 449 |
+
| 4.6546 | 105780 | 0.4732 | - |
|
| 450 |
+
| 4.6550 | 105790 | 0.4869 | - |
|
| 451 |
+
| 4.6555 | 105800 | 0.463 | - |
|
| 452 |
+
| 4.6559 | 105810 | 0.5 | - |
|
| 453 |
+
| 4.6563 | 105820 | 0.4671 | - |
|
| 454 |
+
| 4.6568 | 105830 | 0.4734 | - |
|
| 455 |
+
| 4.6572 | 105840 | 0.4699 | - |
|
| 456 |
+
| 4.6577 | 105850 | 0.4864 | - |
|
| 457 |
+
| 4.6581 | 105860 | 0.5178 | - |
|
| 458 |
+
| 4.6585 | 105870 | 0.4782 | - |
|
| 459 |
+
| 4.6590 | 105880 | 0.4902 | - |
|
| 460 |
+
| 4.6594 | 105890 | 0.4823 | - |
|
| 461 |
+
| 4.6599 | 105900 | 0.4542 | - |
|
| 462 |
+
| 4.6603 | 105910 | 0.4609 | - |
|
| 463 |
+
| 4.6607 | 105920 | 0.4586 | - |
|
| 464 |
+
| 4.6612 | 105930 | 0.4864 | - |
|
| 465 |
+
| 4.6616 | 105940 | 0.479 | - |
|
| 466 |
+
| 4.6621 | 105950 | 0.4717 | - |
|
| 467 |
+
| 4.6625 | 105960 | 0.4938 | - |
|
| 468 |
+
| 4.6629 | 105970 | 0.4685 | - |
|
| 469 |
+
| 4.6634 | 105980 | 0.4705 | - |
|
| 470 |
+
| 4.6638 | 105990 | 0.4958 | - |
|
| 471 |
+
| 4.6643 | 106000 | 0.4722 | - |
|
| 472 |
+
| 4.6647 | 106010 | 0.4633 | - |
|
| 473 |
+
| 4.6651 | 106020 | 0.4877 | - |
|
| 474 |
+
| 4.6656 | 106030 | 0.4606 | - |
|
| 475 |
+
| 4.6660 | 106040 | 0.4797 | - |
|
| 476 |
+
| 4.6665 | 106050 | 0.4493 | - |
|
| 477 |
+
| 4.6669 | 106060 | 0.4745 | - |
|
| 478 |
+
| 4.6673 | 106070 | 0.4918 | - |
|
| 479 |
+
| 4.6678 | 106080 | 0.4966 | - |
|
| 480 |
+
| 4.6682 | 106090 | 0.4498 | - |
|
| 481 |
+
| 4.6687 | 106100 | 0.4965 | - |
|
| 482 |
+
| 4.6691 | 106110 | 0.4911 | - |
|
| 483 |
+
| 4.6695 | 106120 | 0.4907 | - |
|
| 484 |
+
| 4.6700 | 106130 | 0.4983 | - |
|
| 485 |
+
| 4.6704 | 106140 | 0.4665 | - |
|
| 486 |
+
| 4.6709 | 106150 | 0.4656 | - |
|
| 487 |
+
| 4.6713 | 106160 | 0.4967 | - |
|
| 488 |
+
| 4.6717 | 106170 | 0.4849 | - |
|
| 489 |
+
| 4.6722 | 106180 | 0.4895 | - |
|
| 490 |
+
| 4.6726 | 106190 | 0.5068 | - |
|
| 491 |
+
| 4.6731 | 106200 | 0.4711 | - |
|
| 492 |
+
| 4.6735 | 106210 | 0.4674 | - |
|
| 493 |
+
| 4.6739 | 106220 | 0.4659 | - |
|
| 494 |
+
| 4.6744 | 106230 | 0.4551 | - |
|
| 495 |
+
| 4.6748 | 106240 | 0.4449 | - |
|
| 496 |
+
| 4.6753 | 106250 | 0.4719 | - |
|
| 497 |
+
| 4.6757 | 106260 | 0.4872 | - |
|
| 498 |
+
| 4.6761 | 106270 | 0.4966 | - |
|
| 499 |
+
| 4.6766 | 106280 | 0.4792 | - |
|
| 500 |
+
| 4.6770 | 106290 | 0.4678 | - |
|
| 501 |
+
| 4.6775 | 106300 | 0.4731 | - |
|
| 502 |
+
| 4.6779 | 106310 | 0.4692 | - |
|
| 503 |
+
| 4.6783 | 106320 | 0.4766 | - |
|
| 504 |
+
| 4.6788 | 106330 | 0.4862 | - |
|
| 505 |
+
| 4.6792 | 106340 | 0.4784 | - |
|
| 506 |
+
| 4.6797 | 106350 | 0.4583 | - |
|
| 507 |
+
| 4.6801 | 106360 | 0.483 | - |
|
| 508 |
+
| 4.6805 | 106370 | 0.4846 | - |
|
| 509 |
+
| 4.6810 | 106380 | 0.4742 | - |
|
| 510 |
+
| 4.6814 | 106390 | 0.4573 | - |
|
| 511 |
+
| 4.6819 | 106400 | 0.4849 | - |
|
| 512 |
+
| 4.6823 | 106410 | 0.4731 | - |
|
| 513 |
+
| 4.6827 | 106420 | 0.4779 | - |
|
| 514 |
+
| 4.6832 | 106430 | 0.499 | - |
|
| 515 |
+
| 4.6836 | 106440 | 0.4798 | - |
|
| 516 |
+
| 4.6841 | 106450 | 0.4812 | - |
|
| 517 |
+
| 4.6845 | 106460 | 0.4946 | - |
|
| 518 |
+
| 4.6849 | 106470 | 0.4477 | - |
|
| 519 |
+
| 4.6854 | 106480 | 0.488 | - |
|
| 520 |
+
| 4.6858 | 106490 | 0.453 | - |
|
| 521 |
+
| 4.6863 | 106500 | 0.492 | - |
|
| 522 |
+
| 4.6867 | 106510 | 0.4665 | - |
|
| 523 |
+
| 4.6871 | 106520 | 0.478 | - |
|
| 524 |
+
| 4.6876 | 106530 | 0.4756 | - |
|
| 525 |
+
| 4.6880 | 106540 | 0.4766 | - |
|
| 526 |
+
| 4.6885 | 106550 | 0.4797 | - |
|
| 527 |
+
| 4.6889 | 106560 | 0.4539 | - |
|
| 528 |
+
| 4.6893 | 106570 | 0.4704 | - |
|
| 529 |
+
| 4.6898 | 106580 | 0.4763 | - |
|
| 530 |
+
| 4.6902 | 106590 | 0.4708 | - |
|
| 531 |
+
| 4.6907 | 106600 | 0.4594 | - |
|
| 532 |
+
| 4.6911 | 106610 | 0.477 | - |
|
| 533 |
+
| 4.6915 | 106620 | 0.471 | - |
|
| 534 |
+
| 4.6920 | 106630 | 0.4766 | - |
|
| 535 |
+
| 4.6924 | 106640 | 0.5066 | - |
|
| 536 |
+
| 4.6929 | 106650 | 0.5013 | - |
|
| 537 |
+
| 4.6933 | 106660 | 0.4733 | - |
|
| 538 |
+
| 4.6937 | 106670 | 0.4751 | - |
|
| 539 |
+
| 4.6942 | 106680 | 0.4794 | - |
|
| 540 |
+
| 4.6946 | 106690 | 0.4897 | - |
|
| 541 |
+
| 4.6951 | 106700 | 0.483 | - |
|
| 542 |
+
| 4.6955 | 106710 | 0.4732 | - |
|
| 543 |
+
| 4.6959 | 106720 | 0.4744 | - |
|
| 544 |
+
| 4.6964 | 106730 | 0.4627 | - |
|
| 545 |
+
| 4.6968 | 106740 | 0.4728 | - |
|
| 546 |
+
| 4.6973 | 106750 | 0.4698 | - |
|
| 547 |
+
| 4.6977 | 106760 | 0.4787 | - |
|
| 548 |
+
| 4.6981 | 106770 | 0.474 | - |
|
| 549 |
+
| 4.6986 | 106780 | 0.4667 | - |
|
| 550 |
+
| 4.6990 | 106790 | 0.4879 | - |
|
| 551 |
+
| 4.6995 | 106800 | 0.4994 | - |
|
| 552 |
+
| 4.6999 | 106810 | 0.4989 | - |
|
| 553 |
+
| 4.7003 | 106820 | 0.4592 | - |
|
| 554 |
+
| 4.7008 | 106830 | 0.4613 | - |
|
| 555 |
+
| 4.7012 | 106840 | 0.4904 | - |
|
| 556 |
+
| 4.7017 | 106850 | 0.4727 | - |
|
| 557 |
+
| 4.7021 | 106860 | 0.4681 | - |
|
| 558 |
+
| 4.7025 | 106870 | 0.4785 | - |
|
| 559 |
+
| 4.7029 | 106878 | - | 1.2603 |
|
| 560 |
+
| 4.7030 | 106880 | 0.4598 | - |
|
| 561 |
+
| 4.7034 | 106890 | 0.49 | - |
|
| 562 |
+
| 4.7039 | 106900 | 0.4809 | - |
|
| 563 |
+
| 4.7043 | 106910 | 0.5019 | - |
|
| 564 |
+
| 4.7047 | 106920 | 0.4417 | - |
|
| 565 |
+
| 4.7052 | 106930 | 0.4856 | - |
|
| 566 |
+
| 4.7056 | 106940 | 0.4656 | - |
|
| 567 |
+
| 4.7061 | 106950 | 0.5102 | - |
|
| 568 |
+
| 4.7065 | 106960 | 0.4836 | - |
|
| 569 |
+
| 4.7069 | 106970 | 0.4549 | - |
|
| 570 |
+
| 4.7074 | 106980 | 0.4767 | - |
|
| 571 |
+
| 4.7078 | 106990 | 0.4794 | - |
|
| 572 |
+
| 4.7083 | 107000 | 0.4979 | - |
|
| 573 |
+
| 4.7087 | 107010 | 0.4739 | - |
|
| 574 |
+
| 4.7091 | 107020 | 0.4941 | - |
|
| 575 |
+
| 4.7096 | 107030 | 0.4783 | - |
|
| 576 |
+
| 4.7100 | 107040 | 0.5039 | - |
|
| 577 |
+
| 4.7105 | 107050 | 0.4601 | - |
|
| 578 |
+
| 4.7109 | 107060 | 0.4761 | - |
|
| 579 |
+
| 4.7113 | 107070 | 0.4695 | - |
|
| 580 |
+
| 4.7118 | 107080 | 0.5134 | - |
|
| 581 |
+
| 4.7122 | 107090 | 0.4816 | - |
|
| 582 |
+
| 4.7127 | 107100 | 0.4791 | - |
|
| 583 |
+
| 4.7131 | 107110 | 0.4601 | - |
|
| 584 |
+
| 4.7135 | 107120 | 0.4884 | - |
|
| 585 |
+
| 4.7140 | 107130 | 0.4891 | - |
|
| 586 |
+
| 4.7144 | 107140 | 0.4559 | - |
|
| 587 |
+
| 4.7149 | 107150 | 0.4439 | - |
|
| 588 |
+
| 4.7153 | 107160 | 0.493 | - |
|
| 589 |
+
| 4.7157 | 107170 | 0.4851 | - |
|
| 590 |
+
| 4.7162 | 107180 | 0.4774 | - |
|
| 591 |
+
| 4.7166 | 107190 | 0.4638 | - |
|
| 592 |
+
| 4.7171 | 107200 | 0.4683 | - |
|
| 593 |
+
| 4.7175 | 107210 | 0.4733 | - |
|
| 594 |
+
| 4.7179 | 107220 | 0.4859 | - |
|
| 595 |
+
| 4.7184 | 107230 | 0.4867 | - |
|
| 596 |
+
| 4.7188 | 107240 | 0.4739 | - |
|
| 597 |
+
| 4.7193 | 107250 | 0.4948 | - |
|
| 598 |
+
| 4.7197 | 107260 | 0.4621 | - |
|
| 599 |
+
| 4.7201 | 107270 | 0.4627 | - |
|
| 600 |
+
| 4.7206 | 107280 | 0.498 | - |
|
| 601 |
+
| 4.7210 | 107290 | 0.4614 | - |
|
| 602 |
+
| 4.7215 | 107300 | 0.4561 | - |
|
| 603 |
+
| 4.7219 | 107310 | 0.4893 | - |
|
| 604 |
+
| 4.7223 | 107320 | 0.4621 | - |
|
| 605 |
+
| 4.7228 | 107330 | 0.4722 | - |
|
| 606 |
+
| 4.7232 | 107340 | 0.485 | - |
|
| 607 |
+
| 4.7237 | 107350 | 0.4628 | - |
|
| 608 |
+
| 4.7241 | 107360 | 0.4807 | - |
|
| 609 |
+
| 4.7245 | 107370 | 0.4798 | - |
|
| 610 |
+
| 4.7250 | 107380 | 0.4673 | - |
|
| 611 |
+
| 4.7254 | 107390 | 0.4703 | - |
|
| 612 |
+
| 4.7259 | 107400 | 0.4956 | - |
|
| 613 |
+
| 4.7263 | 107410 | 0.4715 | - |
|
| 614 |
+
| 4.7267 | 107420 | 0.4928 | - |
|
| 615 |
+
| 4.7272 | 107430 | 0.4854 | - |
|
| 616 |
+
| 4.7276 | 107440 | 0.4781 | - |
|
| 617 |
+
| 4.7281 | 107450 | 0.4906 | - |
|
| 618 |
+
| 4.7285 | 107460 | 0.491 | - |
|
| 619 |
+
| 4.7289 | 107470 | 0.4766 | - |
|
| 620 |
+
| 4.7294 | 107480 | 0.4745 | - |
|
| 621 |
+
| 4.7298 | 107490 | 0.4756 | - |
|
| 622 |
+
| 4.7303 | 107500 | 0.4839 | - |
|
| 623 |
+
| 4.7307 | 107510 | 0.4492 | - |
|
| 624 |
+
| 4.7311 | 107520 | 0.4579 | - |
|
| 625 |
+
| 4.7316 | 107530 | 0.4823 | - |
|
| 626 |
+
| 4.7320 | 107540 | 0.4514 | - |
|
| 627 |
+
| 4.7325 | 107550 | 0.4595 | - |
|
| 628 |
+
| 4.7329 | 107560 | 0.4898 | - |
|
| 629 |
+
| 4.7333 | 107570 | 0.4508 | - |
|
| 630 |
+
| 4.7338 | 107580 | 0.49 | - |
|
| 631 |
+
| 4.7342 | 107590 | 0.4475 | - |
|
| 632 |
+
| 4.7347 | 107600 | 0.4801 | - |
|
| 633 |
+
| 4.7351 | 107610 | 0.4665 | - |
|
| 634 |
+
| 4.7355 | 107620 | 0.4769 | - |
|
| 635 |
+
| 4.7360 | 107630 | 0.4827 | - |
|
| 636 |
+
| 4.7364 | 107640 | 0.4817 | - |
|
| 637 |
+
| 4.7369 | 107650 | 0.4608 | - |
|
| 638 |
+
| 4.7373 | 107660 | 0.4681 | - |
|
| 639 |
+
| 4.7377 | 107670 | 0.4681 | - |
|
| 640 |
+
| 4.7382 | 107680 | 0.5057 | - |
|
| 641 |
+
| 4.7386 | 107690 | 0.4849 | - |
|
| 642 |
+
| 4.7391 | 107700 | 0.4793 | - |
|
| 643 |
+
| 4.7395 | 107710 | 0.4935 | - |
|
| 644 |
+
| 4.7399 | 107720 | 0.4763 | - |
|
| 645 |
+
| 4.7404 | 107730 | 0.4774 | - |
|
| 646 |
+
| 4.7408 | 107740 | 0.4883 | - |
|
| 647 |
+
| 4.7413 | 107750 | 0.4613 | - |
|
| 648 |
+
| 4.7417 | 107760 | 0.4817 | - |
|
| 649 |
+
| 4.7421 | 107770 | 0.4721 | - |
|
| 650 |
+
| 4.7426 | 107780 | 0.4681 | - |
|
| 651 |
+
| 4.7430 | 107790 | 0.4818 | - |
|
| 652 |
+
| 4.7435 | 107800 | 0.4762 | - |
|
| 653 |
+
| 4.7439 | 107810 | 0.496 | - |
|
| 654 |
+
| 4.7443 | 107820 | 0.4865 | - |
|
| 655 |
+
| 4.7448 | 107830 | 0.4748 | - |
|
| 656 |
+
| 4.7452 | 107840 | 0.4525 | - |
|
| 657 |
+
| 4.7457 | 107850 | 0.4783 | - |
|
| 658 |
+
| 4.7461 | 107860 | 0.4754 | - |
|
| 659 |
+
| 4.7465 | 107870 | 0.4676 | - |
|
| 660 |
+
| 4.7470 | 107880 | 0.4811 | - |
|
| 661 |
+
| 4.7474 | 107890 | 0.4932 | - |
|
| 662 |
+
| 4.7479 | 107900 | 0.4764 | - |
|
| 663 |
+
| 4.7483 | 107910 | 0.4877 | - |
|
| 664 |
+
| 4.7487 | 107920 | 0.4709 | - |
|
| 665 |
+
| 4.7492 | 107930 | 0.4633 | - |
|
| 666 |
+
| 4.7496 | 107940 | 0.471 | - |
|
| 667 |
+
| 4.7501 | 107950 | 0.4692 | - |
|
| 668 |
+
| 4.7505 | 107960 | 0.4549 | - |
|
| 669 |
+
| 4.7509 | 107970 | 0.4778 | - |
|
| 670 |
+
| 4.7514 | 107980 | 0.4921 | - |
|
| 671 |
+
| 4.7518 | 107990 | 0.4801 | - |
|
| 672 |
+
| 4.7523 | 108000 | 0.4662 | - |
|
| 673 |
+
| 4.7527 | 108010 | 0.4852 | - |
|
| 674 |
+
| 4.7529 | 108015 | - | 1.2617 |
|
| 675 |
+
| 4.7531 | 108020 | 0.4915 | - |
|
| 676 |
+
| 4.7536 | 108030 | 0.472 | - |
|
| 677 |
+
| 4.7540 | 108040 | 0.4906 | - |
|
| 678 |
+
| 4.7545 | 108050 | 0.4817 | - |
|
| 679 |
+
| 4.7549 | 108060 | 0.4724 | - |
|
| 680 |
+
| 4.7553 | 108070 | 0.4696 | - |
|
| 681 |
+
| 4.7558 | 108080 | 0.4791 | - |
|
| 682 |
+
| 4.7562 | 108090 | 0.4819 | - |
|
| 683 |
+
| 4.7567 | 108100 | 0.4953 | - |
|
| 684 |
+
| 4.7571 | 108110 | 0.4665 | - |
|
| 685 |
+
| 4.7575 | 108120 | 0.4688 | - |
|
| 686 |
+
| 4.7580 | 108130 | 0.4791 | - |
|
| 687 |
+
| 4.7584 | 108140 | 0.4734 | - |
|
| 688 |
+
| 4.7589 | 108150 | 0.4828 | - |
|
| 689 |
+
| 4.7593 | 108160 | 0.4718 | - |
|
| 690 |
+
| 4.7597 | 108170 | 0.4813 | - |
|
| 691 |
+
| 4.7602 | 108180 | 0.4827 | - |
|
| 692 |
+
| 4.7606 | 108190 | 0.4993 | - |
|
| 693 |
+
| 4.7611 | 108200 | 0.4745 | - |
|
| 694 |
+
| 4.7615 | 108210 | 0.4777 | - |
|
| 695 |
+
| 4.7619 | 108220 | 0.4757 | - |
|
| 696 |
+
| 4.7624 | 108230 | 0.4799 | - |
|
| 697 |
+
| 4.7628 | 108240 | 0.4936 | - |
|
| 698 |
+
| 4.7633 | 108250 | 0.4893 | - |
|
| 699 |
+
| 4.7637 | 108260 | 0.464 | - |
|
| 700 |
+
| 4.7641 | 108270 | 0.4669 | - |
|
| 701 |
+
| 4.7646 | 108280 | 0.4921 | - |
|
| 702 |
+
| 4.7650 | 108290 | 0.4815 | - |
|
| 703 |
+
| 4.7655 | 108300 | 0.4836 | - |
|
| 704 |
+
| 4.7659 | 108310 | 0.4718 | - |
|
| 705 |
+
| 4.7663 | 108320 | 0.4574 | - |
|
| 706 |
+
| 4.7668 | 108330 | 0.4779 | - |
|
| 707 |
+
| 4.7672 | 108340 | 0.4849 | - |
|
| 708 |
+
| 4.7677 | 108350 | 0.4849 | - |
|
| 709 |
+
| 4.7681 | 108360 | 0.4601 | - |
|
| 710 |
+
| 4.7685 | 108370 | 0.4654 | - |
|
| 711 |
+
| 4.7690 | 108380 | 0.4704 | - |
|
| 712 |
+
| 4.7694 | 108390 | 0.4727 | - |
|
| 713 |
+
| 4.7699 | 108400 | 0.48 | - |
|
| 714 |
+
| 4.7703 | 108410 | 0.4726 | - |
|
| 715 |
+
| 4.7707 | 108420 | 0.4791 | - |
|
| 716 |
+
| 4.7712 | 108430 | 0.4519 | - |
|
| 717 |
+
| 4.7716 | 108440 | 0.4568 | - |
|
| 718 |
+
| 4.7721 | 108450 | 0.4833 | - |
|
| 719 |
+
| 4.7725 | 108460 | 0.476 | - |
|
| 720 |
+
| 4.7729 | 108470 | 0.4597 | - |
|
| 721 |
+
| 4.7734 | 108480 | 0.4745 | - |
|
| 722 |
+
| 4.7738 | 108490 | 0.4744 | - |
|
| 723 |
+
| 4.7743 | 108500 | 0.4601 | - |
|
| 724 |
+
| 4.7747 | 108510 | 0.4807 | - |
|
| 725 |
+
| 4.7751 | 108520 | 0.463 | - |
|
| 726 |
+
| 4.7756 | 108530 | 0.4761 | - |
|
| 727 |
+
| 4.7760 | 108540 | 0.4716 | - |
|
| 728 |
+
| 4.7765 | 108550 | 0.5068 | - |
|
| 729 |
+
| 4.7769 | 108560 | 0.4832 | - |
|
| 730 |
+
| 4.7773 | 108570 | 0.4641 | - |
|
| 731 |
+
| 4.7778 | 108580 | 0.466 | - |
|
| 732 |
+
| 4.7782 | 108590 | 0.4635 | - |
|
| 733 |
+
| 4.7787 | 108600 | 0.5043 | - |
|
| 734 |
+
| 4.7791 | 108610 | 0.4563 | - |
|
| 735 |
+
| 4.7795 | 108620 | 0.4998 | - |
|
| 736 |
+
| 4.7800 | 108630 | 0.5168 | - |
|
| 737 |
+
| 4.7804 | 108640 | 0.4806 | - |
|
| 738 |
+
| 4.7809 | 108650 | 0.4658 | - |
|
| 739 |
+
| 4.7813 | 108660 | 0.4594 | - |
|
| 740 |
+
| 4.7817 | 108670 | 0.4552 | - |
|
| 741 |
+
| 4.7822 | 108680 | 0.4604 | - |
|
| 742 |
+
| 4.7826 | 108690 | 0.4742 | - |
|
| 743 |
+
| 4.7831 | 108700 | 0.5057 | - |
|
| 744 |
+
| 4.7835 | 108710 | 0.4963 | - |
|
| 745 |
+
| 4.7839 | 108720 | 0.4626 | - |
|
| 746 |
+
| 4.7844 | 108730 | 0.4581 | - |
|
| 747 |
+
| 4.7848 | 108740 | 0.473 | - |
|
| 748 |
+
| 4.7853 | 108750 | 0.4914 | - |
|
| 749 |
+
| 4.7857 | 108760 | 0.4838 | - |
|
| 750 |
+
| 4.7861 | 108770 | 0.4643 | - |
|
| 751 |
+
| 4.7866 | 108780 | 0.5038 | - |
|
| 752 |
+
| 4.7870 | 108790 | 0.4858 | - |
|
| 753 |
+
| 4.7875 | 108800 | 0.4516 | - |
|
| 754 |
+
| 4.7879 | 108810 | 0.4685 | - |
|
| 755 |
+
| 4.7883 | 108820 | 0.4639 | - |
|
| 756 |
+
| 4.7888 | 108830 | 0.498 | - |
|
| 757 |
+
| 4.7892 | 108840 | 0.4752 | - |
|
| 758 |
+
| 4.7897 | 108850 | 0.475 | - |
|
| 759 |
+
| 4.7901 | 108860 | 0.4802 | - |
|
| 760 |
+
| 4.7905 | 108870 | 0.4624 | - |
|
| 761 |
+
| 4.7910 | 108880 | 0.4631 | - |
|
| 762 |
+
| 4.7914 | 108890 | 0.4598 | - |
|
| 763 |
+
| 4.7919 | 108900 | 0.4944 | - |
|
| 764 |
+
| 4.7923 | 108910 | 0.4857 | - |
|
| 765 |
+
| 4.7927 | 108920 | 0.4802 | - |
|
| 766 |
+
| 4.7932 | 108930 | 0.4788 | - |
|
| 767 |
+
| 4.7936 | 108940 | 0.473 | - |
|
| 768 |
+
| 4.7941 | 108950 | 0.4966 | - |
|
| 769 |
+
| 4.7945 | 108960 | 0.4845 | - |
|
| 770 |
+
| 4.7949 | 108970 | 0.4732 | - |
|
| 771 |
+
| 4.7954 | 108980 | 0.4749 | - |
|
| 772 |
+
| 4.7958 | 108990 | 0.4975 | - |
|
| 773 |
+
| 4.7963 | 109000 | 0.4812 | - |
|
| 774 |
+
| 4.7967 | 109010 | 0.4489 | - |
|
| 775 |
+
| 4.7971 | 109020 | 0.4791 | - |
|
| 776 |
+
| 4.7976 | 109030 | 0.4701 | - |
|
| 777 |
+
| 4.7980 | 109040 | 0.4691 | - |
|
| 778 |
+
| 4.7985 | 109050 | 0.4798 | - |
|
| 779 |
+
| 4.7989 | 109060 | 0.4769 | - |
|
| 780 |
+
| 4.7993 | 109070 | 0.4867 | - |
|
| 781 |
+
| 4.7998 | 109080 | 0.4873 | - |
|
| 782 |
+
| 4.8002 | 109090 | 0.4789 | - |
|
| 783 |
+
| 4.8007 | 109100 | 0.4458 | - |
|
| 784 |
+
| 4.8011 | 109110 | 0.4816 | - |
|
| 785 |
+
| 4.8015 | 109120 | 0.4718 | - |
|
| 786 |
+
| 4.8020 | 109130 | 0.4983 | - |
|
| 787 |
+
| 4.8024 | 109140 | 0.4901 | - |
|
| 788 |
+
| 4.8029 | 109150 | 0.4701 | - |
|
| 789 |
+
| 4.8030 | 109152 | - | 1.2595 |
|
| 790 |
+
| 4.8033 | 109160 | 0.4656 | - |
|
| 791 |
+
| 4.8037 | 109170 | 0.4845 | - |
|
| 792 |
+
| 4.8042 | 109180 | 0.4523 | - |
|
| 793 |
+
| 4.8046 | 109190 | 0.4638 | - |
|
| 794 |
+
| 4.8051 | 109200 | 0.4744 | - |
|
| 795 |
+
| 4.8055 | 109210 | 0.4916 | - |
|
| 796 |
+
| 4.8059 | 109220 | 0.4891 | - |
|
| 797 |
+
| 4.8064 | 109230 | 0.4787 | - |
|
| 798 |
+
| 4.8068 | 109240 | 0.4762 | - |
|
| 799 |
+
| 4.8073 | 109250 | 0.4643 | - |
|
| 800 |
+
| 4.8077 | 109260 | 0.4882 | - |
|
| 801 |
+
| 4.8081 | 109270 | 0.4844 | - |
|
| 802 |
+
| 4.8086 | 109280 | 0.4761 | - |
|
| 803 |
+
| 4.8090 | 109290 | 0.4708 | - |
|
| 804 |
+
| 4.8095 | 109300 | 0.4795 | - |
|
| 805 |
+
| 4.8099 | 109310 | 0.463 | - |
|
| 806 |
+
| 4.8103 | 109320 | 0.4636 | - |
|
| 807 |
+
| 4.8108 | 109330 | 0.4934 | - |
|
| 808 |
+
| 4.8112 | 109340 | 0.4787 | - |
|
| 809 |
+
| 4.8117 | 109350 | 0.4652 | - |
|
| 810 |
+
| 4.8121 | 109360 | 0.4929 | - |
|
| 811 |
+
| 4.8125 | 109370 | 0.4693 | - |
|
| 812 |
+
| 4.8130 | 109380 | 0.4949 | - |
|
| 813 |
+
| 4.8134 | 109390 | 0.461 | - |
|
| 814 |
+
| 4.8139 | 109400 | 0.4952 | - |
|
| 815 |
+
| 4.8143 | 109410 | 0.4669 | - |
|
| 816 |
+
| 4.8147 | 109420 | 0.4759 | - |
|
| 817 |
+
| 4.8152 | 109430 | 0.4672 | - |
|
| 818 |
+
| 4.8156 | 109440 | 0.4818 | - |
|
| 819 |
+
| 4.8161 | 109450 | 0.4953 | - |
|
| 820 |
+
| 4.8165 | 109460 | 0.4977 | - |
|
| 821 |
+
| 4.8169 | 109470 | 0.4703 | - |
|
| 822 |
+
| 4.8174 | 109480 | 0.5002 | - |
|
| 823 |
+
| 4.8178 | 109490 | 0.4674 | - |
|
| 824 |
+
| 4.8183 | 109500 | 0.4626 | - |
|
| 825 |
+
| 4.8187 | 109510 | 0.4886 | - |
|
| 826 |
+
| 4.8191 | 109520 | 0.4723 | - |
|
| 827 |
+
| 4.8196 | 109530 | 0.4569 | - |
|
| 828 |
+
| 4.8200 | 109540 | 0.4951 | - |
|
| 829 |
+
| 4.8205 | 109550 | 0.4666 | - |
|
| 830 |
+
| 4.8209 | 109560 | 0.5047 | - |
|
| 831 |
+
| 4.8213 | 109570 | 0.4802 | - |
|
| 832 |
+
| 4.8218 | 109580 | 0.4765 | - |
|
| 833 |
+
| 4.8222 | 109590 | 0.4736 | - |
|
| 834 |
+
| 4.8227 | 109600 | 0.4526 | - |
|
| 835 |
+
| 4.8231 | 109610 | 0.4594 | - |
|
| 836 |
+
| 4.8236 | 109620 | 0.4616 | - |
|
| 837 |
+
| 4.8240 | 109630 | 0.4674 | - |
|
| 838 |
+
| 4.8244 | 109640 | 0.4774 | - |
|
| 839 |
+
| 4.8249 | 109650 | 0.4834 | - |
|
| 840 |
+
| 4.8253 | 109660 | 0.4773 | - |
|
| 841 |
+
| 4.8258 | 109670 | 0.4797 | - |
|
| 842 |
+
| 4.8262 | 109680 | 0.4633 | - |
|
| 843 |
+
| 4.8266 | 109690 | 0.472 | - |
|
| 844 |
+
| 4.8271 | 109700 | 0.4755 | - |
|
| 845 |
+
| 4.8275 | 109710 | 0.4761 | - |
|
| 846 |
+
| 4.8280 | 109720 | 0.477 | - |
|
| 847 |
+
| 4.8284 | 109730 | 0.4787 | - |
|
| 848 |
+
| 4.8288 | 109740 | 0.4862 | - |
|
| 849 |
+
| 4.8293 | 109750 | 0.4916 | - |
|
| 850 |
+
| 4.8297 | 109760 | 0.4572 | - |
|
| 851 |
+
| 4.8302 | 109770 | 0.4859 | - |
|
| 852 |
+
| 4.8306 | 109780 | 0.4812 | - |
|
| 853 |
+
| 4.8310 | 109790 | 0.4703 | - |
|
| 854 |
+
| 4.8315 | 109800 | 0.4807 | - |
|
| 855 |
+
| 4.8319 | 109810 | 0.4731 | - |
|
| 856 |
+
| 4.8324 | 109820 | 0.4795 | - |
|
| 857 |
+
| 4.8328 | 109830 | 0.4696 | - |
|
| 858 |
+
| 4.8332 | 109840 | 0.4684 | - |
|
| 859 |
+
| 4.8337 | 109850 | 0.4581 | - |
|
| 860 |
+
| 4.8341 | 109860 | 0.4691 | - |
|
| 861 |
+
| 4.8346 | 109870 | 0.4829 | - |
|
| 862 |
+
| 4.8350 | 109880 | 0.4767 | - |
|
| 863 |
+
| 4.8354 | 109890 | 0.4666 | - |
|
| 864 |
+
| 4.8359 | 109900 | 0.4641 | - |
|
| 865 |
+
| 4.8363 | 109910 | 0.4903 | - |
|
| 866 |
+
| 4.8368 | 109920 | 0.4851 | - |
|
| 867 |
+
| 4.8372 | 109930 | 0.487 | - |
|
| 868 |
+
| 4.8376 | 109940 | 0.4702 | - |
|
| 869 |
+
| 4.8381 | 109950 | 0.4968 | - |
|
| 870 |
+
| 4.8385 | 109960 | 0.4829 | - |
|
| 871 |
+
| 4.8390 | 109970 | 0.4836 | - |
|
| 872 |
+
| 4.8394 | 109980 | 0.4687 | - |
|
| 873 |
+
| 4.8398 | 109990 | 0.4616 | - |
|
| 874 |
+
| 4.8403 | 110000 | 0.4854 | - |
|
| 875 |
+
| 4.8407 | 110010 | 0.4816 | - |
|
| 876 |
+
| 4.8412 | 110020 | 0.5018 | - |
|
| 877 |
+
| 4.8416 | 110030 | 0.4591 | - |
|
| 878 |
+
| 4.8420 | 110040 | 0.478 | - |
|
| 879 |
+
| 4.8425 | 110050 | 0.4653 | - |
|
| 880 |
+
| 4.8429 | 110060 | 0.4628 | - |
|
| 881 |
+
| 4.8434 | 110070 | 0.4778 | - |
|
| 882 |
+
| 4.8438 | 110080 | 0.4808 | - |
|
| 883 |
+
| 4.8442 | 110090 | 0.4861 | - |
|
| 884 |
+
| 4.8447 | 110100 | 0.4884 | - |
|
| 885 |
+
| 4.8451 | 110110 | 0.5016 | - |
|
| 886 |
+
| 4.8456 | 110120 | 0.4706 | - |
|
| 887 |
+
| 4.8460 | 110130 | 0.4716 | - |
|
| 888 |
+
| 4.8464 | 110140 | 0.4519 | - |
|
| 889 |
+
| 4.8469 | 110150 | 0.4949 | - |
|
| 890 |
+
| 4.8473 | 110160 | 0.4757 | - |
|
| 891 |
+
| 4.8478 | 110170 | 0.4853 | - |
|
| 892 |
+
| 4.8482 | 110180 | 0.4871 | - |
|
| 893 |
+
| 4.8486 | 110190 | 0.483 | - |
|
| 894 |
+
| 4.8491 | 110200 | 0.5004 | - |
|
| 895 |
+
| 4.8495 | 110210 | 0.4545 | - |
|
| 896 |
+
| 4.8500 | 110220 | 0.4985 | - |
|
| 897 |
+
| 4.8504 | 110230 | 0.4811 | - |
|
| 898 |
+
| 4.8508 | 110240 | 0.4669 | - |
|
| 899 |
+
| 4.8513 | 110250 | 0.4886 | - |
|
| 900 |
+
| 4.8517 | 110260 | 0.4671 | - |
|
| 901 |
+
| 4.8522 | 110270 | 0.4688 | - |
|
| 902 |
+
| 4.8526 | 110280 | 0.4595 | - |
|
| 903 |
+
| 4.8530 | 110289 | - | 1.2607 |
|
| 904 |
+
| 4.8530 | 110290 | 0.4727 | - |
|
| 905 |
+
| 4.8535 | 110300 | 0.4826 | - |
|
| 906 |
+
| 4.8539 | 110310 | 0.4985 | - |
|
| 907 |
+
| 4.8544 | 110320 | 0.468 | - |
|
| 908 |
+
| 4.8548 | 110330 | 0.4758 | - |
|
| 909 |
+
| 4.8552 | 110340 | 0.4481 | - |
|
| 910 |
+
| 4.8557 | 110350 | 0.5127 | - |
|
| 911 |
+
| 4.8561 | 110360 | 0.4721 | - |
|
| 912 |
+
| 4.8566 | 110370 | 0.4543 | - |
|
| 913 |
+
| 4.8570 | 110380 | 0.4938 | - |
|
| 914 |
+
| 4.8574 | 110390 | 0.4745 | - |
|
| 915 |
+
| 4.8579 | 110400 | 0.4813 | - |
|
| 916 |
+
| 4.8583 | 110410 | 0.4852 | - |
|
| 917 |
+
| 4.8588 | 110420 | 0.4821 | - |
|
| 918 |
+
| 4.8592 | 110430 | 0.4851 | - |
|
| 919 |
+
| 4.8596 | 110440 | 0.4755 | - |
|
| 920 |
+
| 4.8601 | 110450 | 0.4742 | - |
|
| 921 |
+
| 4.8605 | 110460 | 0.4787 | - |
|
| 922 |
+
| 4.8610 | 110470 | 0.4496 | - |
|
| 923 |
+
| 4.8614 | 110480 | 0.4763 | - |
|
| 924 |
+
| 4.8618 | 110490 | 0.4697 | - |
|
| 925 |
+
| 4.8623 | 110500 | 0.4676 | - |
|
| 926 |
+
| 4.8627 | 110510 | 0.4874 | - |
|
| 927 |
+
| 4.8632 | 110520 | 0.4859 | - |
|
| 928 |
+
| 4.8636 | 110530 | 0.4549 | - |
|
| 929 |
+
| 4.8640 | 110540 | 0.4642 | - |
|
| 930 |
+
| 4.8645 | 110550 | 0.466 | - |
|
| 931 |
+
| 4.8649 | 110560 | 0.4567 | - |
|
| 932 |
+
| 4.8654 | 110570 | 0.4777 | - |
|
| 933 |
+
| 4.8658 | 110580 | 0.4808 | - |
|
| 934 |
+
| 4.8662 | 110590 | 0.4755 | - |
|
| 935 |
+
| 4.8667 | 110600 | 0.4815 | - |
|
| 936 |
+
| 4.8671 | 110610 | 0.4656 | - |
|
| 937 |
+
| 4.8676 | 110620 | 0.4768 | - |
|
| 938 |
+
| 4.8680 | 110630 | 0.4512 | - |
|
| 939 |
+
| 4.8684 | 110640 | 0.4724 | - |
|
| 940 |
+
| 4.8689 | 110650 | 0.4534 | - |
|
| 941 |
+
| 4.8693 | 110660 | 0.4593 | - |
|
| 942 |
+
| 4.8698 | 110670 | 0.463 | - |
|
| 943 |
+
| 4.8702 | 110680 | 0.4827 | - |
|
| 944 |
+
| 4.8706 | 110690 | 0.4555 | - |
|
| 945 |
+
| 4.8711 | 110700 | 0.4857 | - |
|
| 946 |
+
| 4.8715 | 110710 | 0.4692 | - |
|
| 947 |
+
| 4.8720 | 110720 | 0.4678 | - |
|
| 948 |
+
| 4.8724 | 110730 | 0.4755 | - |
|
| 949 |
+
| 4.8728 | 110740 | 0.4581 | - |
|
| 950 |
+
| 4.8733 | 110750 | 0.4789 | - |
|
| 951 |
+
| 4.8737 | 110760 | 0.4793 | - |
|
| 952 |
+
| 4.8742 | 110770 | 0.4923 | - |
|
| 953 |
+
| 4.8746 | 110780 | 0.4734 | - |
|
| 954 |
+
| 4.8750 | 110790 | 0.4612 | - |
|
| 955 |
+
| 4.8755 | 110800 | 0.4912 | - |
|
| 956 |
+
| 4.8759 | 110810 | 0.4933 | - |
|
| 957 |
+
| 4.8764 | 110820 | 0.4737 | - |
|
| 958 |
+
| 4.8768 | 110830 | 0.467 | - |
|
| 959 |
+
| 4.8772 | 110840 | 0.4876 | - |
|
| 960 |
+
| 4.8777 | 110850 | 0.4837 | - |
|
| 961 |
+
| 4.8781 | 110860 | 0.473 | - |
|
| 962 |
+
| 4.8786 | 110870 | 0.4761 | - |
|
| 963 |
+
| 4.8790 | 110880 | 0.4913 | - |
|
| 964 |
+
| 4.8794 | 110890 | 0.4677 | - |
|
| 965 |
+
| 4.8799 | 110900 | 0.4844 | - |
|
| 966 |
+
| 4.8803 | 110910 | 0.4669 | - |
|
| 967 |
+
| 4.8808 | 110920 | 0.475 | - |
|
| 968 |
+
| 4.8812 | 110930 | 0.4778 | - |
|
| 969 |
+
| 4.8816 | 110940 | 0.4815 | - |
|
| 970 |
+
| 4.8821 | 110950 | 0.4918 | - |
|
| 971 |
+
| 4.8825 | 110960 | 0.4707 | - |
|
| 972 |
+
| 4.8830 | 110970 | 0.4741 | - |
|
| 973 |
+
| 4.8834 | 110980 | 0.5028 | - |
|
| 974 |
+
| 4.8838 | 110990 | 0.4735 | - |
|
| 975 |
+
| 4.8843 | 111000 | 0.4973 | - |
|
| 976 |
+
| 4.8847 | 111010 | 0.4673 | - |
|
| 977 |
+
| 4.8852 | 111020 | 0.4816 | - |
|
| 978 |
+
| 4.8856 | 111030 | 0.4584 | - |
|
| 979 |
+
| 4.8860 | 111040 | 0.453 | - |
|
| 980 |
+
| 4.8865 | 111050 | 0.4699 | - |
|
| 981 |
+
| 4.8869 | 111060 | 0.4641 | - |
|
| 982 |
+
| 4.8874 | 111070 | 0.4587 | - |
|
| 983 |
+
| 4.8878 | 111080 | 0.4828 | - |
|
| 984 |
+
| 4.8882 | 111090 | 0.4686 | - |
|
| 985 |
+
| 4.8887 | 111100 | 0.4742 | - |
|
| 986 |
+
| 4.8891 | 111110 | 0.4558 | - |
|
| 987 |
+
| 4.8896 | 111120 | 0.4988 | - |
|
| 988 |
+
| 4.8900 | 111130 | 0.4864 | - |
|
| 989 |
+
| 4.8904 | 111140 | 0.4722 | - |
|
| 990 |
+
| 4.8909 | 111150 | 0.4494 | - |
|
| 991 |
+
| 4.8913 | 111160 | 0.4726 | - |
|
| 992 |
+
| 4.8918 | 111170 | 0.4531 | - |
|
| 993 |
+
| 4.8922 | 111180 | 0.4882 | - |
|
| 994 |
+
| 4.8926 | 111190 | 0.4575 | - |
|
| 995 |
+
| 4.8931 | 111200 | 0.4703 | - |
|
| 996 |
+
| 4.8935 | 111210 | 0.4643 | - |
|
| 997 |
+
| 4.8940 | 111220 | 0.4827 | - |
|
| 998 |
+
| 4.8944 | 111230 | 0.4711 | - |
|
| 999 |
+
| 4.8948 | 111240 | 0.4589 | - |
|
| 1000 |
+
| 4.8953 | 111250 | 0.485 | - |
|
| 1001 |
+
| 4.8957 | 111260 | 0.4804 | - |
|
| 1002 |
+
| 4.8962 | 111270 | 0.4439 | - |
|
| 1003 |
+
| 4.8966 | 111280 | 0.4743 | - |
|
| 1004 |
+
| 4.8970 | 111290 | 0.4799 | - |
|
| 1005 |
+
| 4.8975 | 111300 | 0.4653 | - |
|
| 1006 |
+
| 4.8979 | 111310 | 0.4941 | - |
|
| 1007 |
+
| 4.8984 | 111320 | 0.4618 | - |
|
| 1008 |
+
| 4.8988 | 111330 | 0.4753 | - |
|
| 1009 |
+
| 4.8992 | 111340 | 0.484 | - |
|
| 1010 |
+
| 4.8997 | 111350 | 0.4785 | - |
|
| 1011 |
+
| 4.9001 | 111360 | 0.4871 | - |
|
| 1012 |
+
| 4.9006 | 111370 | 0.4626 | - |
|
| 1013 |
+
| 4.9010 | 111380 | 0.4943 | - |
|
| 1014 |
+
| 4.9014 | 111390 | 0.4885 | - |
|
| 1015 |
+
| 4.9019 | 111400 | 0.4798 | - |
|
| 1016 |
+
| 4.9023 | 111410 | 0.4837 | - |
|
| 1017 |
+
| 4.9028 | 111420 | 0.4733 | - |
|
| 1018 |
+
| 4.9030 | 111426 | - | 1.2603 |
|
| 1019 |
+
| 4.9032 | 111430 | 0.4807 | - |
|
| 1020 |
+
| 4.9036 | 111440 | 0.4902 | - |
|
| 1021 |
+
| 4.9041 | 111450 | 0.4677 | - |
|
| 1022 |
+
| 4.9045 | 111460 | 0.4815 | - |
|
| 1023 |
+
| 4.9050 | 111470 | 0.4674 | - |
|
| 1024 |
+
| 4.9054 | 111480 | 0.4878 | - |
|
| 1025 |
+
| 4.9058 | 111490 | 0.4574 | - |
|
| 1026 |
+
| 4.9063 | 111500 | 0.4699 | - |
|
| 1027 |
+
| 4.9067 | 111510 | 0.484 | - |
|
| 1028 |
+
| 4.9072 | 111520 | 0.4876 | - |
|
| 1029 |
+
| 4.9076 | 111530 | 0.4758 | - |
|
| 1030 |
+
| 4.9080 | 111540 | 0.458 | - |
|
| 1031 |
+
| 4.9085 | 111550 | 0.4681 | - |
|
| 1032 |
+
| 4.9089 | 111560 | 0.4815 | - |
|
| 1033 |
+
| 4.9094 | 111570 | 0.4676 | - |
|
| 1034 |
+
| 4.9098 | 111580 | 0.4651 | - |
|
| 1035 |
+
| 4.9102 | 111590 | 0.4532 | - |
|
| 1036 |
+
| 4.9107 | 111600 | 0.48 | - |
|
| 1037 |
+
| 4.9111 | 111610 | 0.4988 | - |
|
| 1038 |
+
| 4.9116 | 111620 | 0.4623 | - |
|
| 1039 |
+
| 4.9120 | 111630 | 0.4868 | - |
|
| 1040 |
+
| 4.9124 | 111640 | 0.4718 | - |
|
| 1041 |
+
| 4.9129 | 111650 | 0.4846 | - |
|
| 1042 |
+
| 4.9133 | 111660 | 0.4547 | - |
|
| 1043 |
+
| 4.9138 | 111670 | 0.491 | - |
|
| 1044 |
+
| 4.9142 | 111680 | 0.4834 | - |
|
| 1045 |
+
| 4.9146 | 111690 | 0.4864 | - |
|
| 1046 |
+
| 4.9151 | 111700 | 0.4706 | - |
|
| 1047 |
+
| 4.9155 | 111710 | 0.4732 | - |
|
| 1048 |
+
| 4.9160 | 111720 | 0.4575 | - |
|
| 1049 |
+
| 4.9164 | 111730 | 0.4761 | - |
|
| 1050 |
+
| 4.9168 | 111740 | 0.4848 | - |
|
| 1051 |
+
| 4.9173 | 111750 | 0.4748 | - |
|
| 1052 |
+
| 4.9177 | 111760 | 0.4873 | - |
|
| 1053 |
+
| 4.9182 | 111770 | 0.4561 | - |
|
| 1054 |
+
| 4.9186 | 111780 | 0.4928 | - |
|
| 1055 |
+
| 4.9190 | 111790 | 0.4813 | - |
|
| 1056 |
+
| 4.9195 | 111800 | 0.4766 | - |
|
| 1057 |
+
| 4.9199 | 111810 | 0.4764 | - |
|
| 1058 |
+
| 4.9204 | 111820 | 0.4423 | - |
|
| 1059 |
+
| 4.9208 | 111830 | 0.4877 | - |
|
| 1060 |
+
| 4.9212 | 111840 | 0.4587 | - |
|
| 1061 |
+
| 4.9217 | 111850 | 0.4941 | - |
|
| 1062 |
+
| 4.9221 | 111860 | 0.4841 | - |
|
| 1063 |
+
| 4.9226 | 111870 | 0.4725 | - |
|
| 1064 |
+
| 4.9230 | 111880 | 0.501 | - |
|
| 1065 |
+
| 4.9234 | 111890 | 0.4562 | - |
|
| 1066 |
+
| 4.9239 | 111900 | 0.4752 | - |
|
| 1067 |
+
| 4.9243 | 111910 | 0.4876 | - |
|
| 1068 |
+
| 4.9248 | 111920 | 0.4877 | - |
|
| 1069 |
+
| 4.9252 | 111930 | 0.4803 | - |
|
| 1070 |
+
| 4.9256 | 111940 | 0.4617 | - |
|
| 1071 |
+
| 4.9261 | 111950 | 0.4801 | - |
|
| 1072 |
+
| 4.9265 | 111960 | 0.4807 | - |
|
| 1073 |
+
| 4.9270 | 111970 | 0.4769 | - |
|
| 1074 |
+
| 4.9274 | 111980 | 0.4793 | - |
|
| 1075 |
+
| 4.9278 | 111990 | 0.4845 | - |
|
| 1076 |
+
| 4.9283 | 112000 | 0.4903 | - |
|
| 1077 |
+
| 4.9287 | 112010 | 0.4665 | - |
|
| 1078 |
+
| 4.9292 | 112020 | 0.4654 | - |
|
| 1079 |
+
| 4.9296 | 112030 | 0.4741 | - |
|
| 1080 |
+
| 4.9300 | 112040 | 0.4635 | - |
|
| 1081 |
+
| 4.9305 | 112050 | 0.4757 | - |
|
| 1082 |
+
| 4.9309 | 112060 | 0.5063 | - |
|
| 1083 |
+
| 4.9314 | 112070 | 0.4591 | - |
|
| 1084 |
+
| 4.9318 | 112080 | 0.4725 | - |
|
| 1085 |
+
| 4.9322 | 112090 | 0.4821 | - |
|
| 1086 |
+
| 4.9327 | 112100 | 0.4732 | - |
|
| 1087 |
+
| 4.9331 | 112110 | 0.4484 | - |
|
| 1088 |
+
| 4.9336 | 112120 | 0.4517 | - |
|
| 1089 |
+
| 4.9340 | 112130 | 0.4764 | - |
|
| 1090 |
+
| 4.9344 | 112140 | 0.494 | - |
|
| 1091 |
+
| 4.9349 | 112150 | 0.492 | - |
|
| 1092 |
+
| 4.9353 | 112160 | 0.4605 | - |
|
| 1093 |
+
| 4.9358 | 112170 | 0.4682 | - |
|
| 1094 |
+
| 4.9362 | 112180 | 0.4846 | - |
|
| 1095 |
+
| 4.9366 | 112190 | 0.4966 | - |
|
| 1096 |
+
| 4.9371 | 112200 | 0.4566 | - |
|
| 1097 |
+
| 4.9375 | 112210 | 0.4569 | - |
|
| 1098 |
+
| 4.9380 | 112220 | 0.4731 | - |
|
| 1099 |
+
| 4.9384 | 112230 | 0.4659 | - |
|
| 1100 |
+
| 4.9388 | 112240 | 0.4594 | - |
|
| 1101 |
+
| 4.9393 | 112250 | 0.4599 | - |
|
| 1102 |
+
| 4.9397 | 112260 | 0.4643 | - |
|
| 1103 |
+
| 4.9402 | 112270 | 0.482 | - |
|
| 1104 |
+
| 4.9406 | 112280 | 0.4489 | - |
|
| 1105 |
+
| 4.9410 | 112290 | 0.4976 | - |
|
| 1106 |
+
| 4.9415 | 112300 | 0.458 | - |
|
| 1107 |
+
| 4.9419 | 112310 | 0.473 | - |
|
| 1108 |
+
| 4.9424 | 112320 | 0.4799 | - |
|
| 1109 |
+
| 4.9428 | 112330 | 0.4821 | - |
|
| 1110 |
+
| 4.9432 | 112340 | 0.4704 | - |
|
| 1111 |
+
| 4.9437 | 112350 | 0.4603 | - |
|
| 1112 |
+
| 4.9441 | 112360 | 0.4751 | - |
|
| 1113 |
+
| 4.9446 | 112370 | 0.5101 | - |
|
| 1114 |
+
| 4.9450 | 112380 | 0.4974 | - |
|
| 1115 |
+
| 4.9454 | 112390 | 0.4672 | - |
|
| 1116 |
+
| 4.9459 | 112400 | 0.4812 | - |
|
| 1117 |
+
| 4.9463 | 112410 | 0.4882 | - |
|
| 1118 |
+
| 4.9468 | 112420 | 0.4735 | - |
|
| 1119 |
+
| 4.9472 | 112430 | 0.4812 | - |
|
| 1120 |
+
| 4.9476 | 112440 | 0.458 | - |
|
| 1121 |
+
| 4.9481 | 112450 | 0.4874 | - |
|
| 1122 |
+
| 4.9485 | 112460 | 0.4535 | - |
|
| 1123 |
+
| 4.9490 | 112470 | 0.4811 | - |
|
| 1124 |
+
| 4.9494 | 112480 | 0.4795 | - |
|
| 1125 |
+
| 4.9498 | 112490 | 0.4994 | - |
|
| 1126 |
+
| 4.9503 | 112500 | 0.4498 | - |
|
| 1127 |
+
| 4.9507 | 112510 | 0.4672 | - |
|
| 1128 |
+
| 4.9512 | 112520 | 0.4861 | - |
|
| 1129 |
+
| 4.9516 | 112530 | 0.464 | - |
|
| 1130 |
+
| 4.9520 | 112540 | 0.4611 | - |
|
| 1131 |
+
| 4.9525 | 112550 | 0.4804 | - |
|
| 1132 |
+
| 4.9529 | 112560 | 0.4979 | - |
|
| 1133 |
+
| 4.9530 | 112563 | - | 1.2611 |
|
| 1134 |
+
| 4.9534 | 112570 | 0.4769 | - |
|
| 1135 |
+
| 4.9538 | 112580 | 0.4854 | - |
|
| 1136 |
+
| 4.9542 | 112590 | 0.4864 | - |
|
| 1137 |
+
| 4.9547 | 112600 | 0.5016 | - |
|
| 1138 |
+
| 4.9551 | 112610 | 0.4948 | - |
|
| 1139 |
+
| 4.9556 | 112620 | 0.4697 | - |
|
| 1140 |
+
| 4.9560 | 112630 | 0.4512 | - |
|
| 1141 |
+
| 4.9564 | 112640 | 0.4635 | - |
|
| 1142 |
+
| 4.9569 | 112650 | 0.4336 | - |
|
| 1143 |
+
| 4.9573 | 112660 | 0.4716 | - |
|
| 1144 |
+
| 4.9578 | 112670 | 0.4724 | - |
|
| 1145 |
+
| 4.9582 | 112680 | 0.4628 | - |
|
| 1146 |
+
| 4.9586 | 112690 | 0.4722 | - |
|
| 1147 |
+
| 4.9591 | 112700 | 0.4689 | - |
|
| 1148 |
+
| 4.9595 | 112710 | 0.4758 | - |
|
| 1149 |
+
| 4.9600 | 112720 | 0.4934 | - |
|
| 1150 |
+
| 4.9604 | 112730 | 0.4693 | - |
|
| 1151 |
+
| 4.9608 | 112740 | 0.4702 | - |
|
| 1152 |
+
| 4.9613 | 112750 | 0.4794 | - |
|
| 1153 |
+
| 4.9617 | 112760 | 0.4855 | - |
|
| 1154 |
+
| 4.9622 | 112770 | 0.4635 | - |
|
| 1155 |
+
| 4.9626 | 112780 | 0.4706 | - |
|
| 1156 |
+
| 4.9630 | 112790 | 0.4563 | - |
|
| 1157 |
+
| 4.9635 | 112800 | 0.4573 | - |
|
| 1158 |
+
| 4.9639 | 112810 | 0.4581 | - |
|
| 1159 |
+
| 4.9644 | 112820 | 0.4784 | - |
|
| 1160 |
+
| 4.9648 | 112830 | 0.4882 | - |
|
| 1161 |
+
| 4.9652 | 112840 | 0.4754 | - |
|
| 1162 |
+
| 4.9657 | 112850 | 0.4775 | - |
|
| 1163 |
+
| 4.9661 | 112860 | 0.4808 | - |
|
| 1164 |
+
| 4.9666 | 112870 | 0.4691 | - |
|
| 1165 |
+
| 4.9670 | 112880 | 0.4911 | - |
|
| 1166 |
+
| 4.9674 | 112890 | 0.4681 | - |
|
| 1167 |
+
| 4.9679 | 112900 | 0.4825 | - |
|
| 1168 |
+
| 4.9683 | 112910 | 0.4467 | - |
|
| 1169 |
+
| 4.9688 | 112920 | 0.4733 | - |
|
| 1170 |
+
| 4.9692 | 112930 | 0.4825 | - |
|
| 1171 |
+
| 4.9696 | 112940 | 0.49 | - |
|
| 1172 |
+
| 4.9701 | 112950 | 0.4584 | - |
|
| 1173 |
+
| 4.9705 | 112960 | 0.4849 | - |
|
| 1174 |
+
| 4.9710 | 112970 | 0.5077 | - |
|
| 1175 |
+
| 4.9714 | 112980 | 0.462 | - |
|
| 1176 |
+
| 4.9718 | 112990 | 0.4823 | - |
|
| 1177 |
+
| 4.9723 | 113000 | 0.4838 | - |
|
| 1178 |
+
| 4.9727 | 113010 | 0.4538 | - |
|
| 1179 |
+
| 4.9732 | 113020 | 0.4812 | - |
|
| 1180 |
+
| 4.9736 | 113030 | 0.4525 | - |
|
| 1181 |
+
| 4.9740 | 113040 | 0.467 | - |
|
| 1182 |
+
| 4.9745 | 113050 | 0.4642 | - |
|
| 1183 |
+
| 4.9749 | 113060 | 0.4625 | - |
|
| 1184 |
+
| 4.9754 | 113070 | 0.4775 | - |
|
| 1185 |
+
| 4.9758 | 113080 | 0.4823 | - |
|
| 1186 |
+
| 4.9762 | 113090 | 0.4663 | - |
|
| 1187 |
+
| 4.9767 | 113100 | 0.4813 | - |
|
| 1188 |
+
| 4.9771 | 113110 | 0.4687 | - |
|
| 1189 |
+
| 4.9776 | 113120 | 0.5004 | - |
|
| 1190 |
+
| 4.9780 | 113130 | 0.4938 | - |
|
| 1191 |
+
| 4.9784 | 113140 | 0.4819 | - |
|
| 1192 |
+
| 4.9789 | 113150 | 0.4665 | - |
|
| 1193 |
+
| 4.9793 | 113160 | 0.4539 | - |
|
| 1194 |
+
| 4.9798 | 113170 | 0.4368 | - |
|
| 1195 |
+
| 4.9802 | 113180 | 0.4844 | - |
|
| 1196 |
+
| 4.9806 | 113190 | 0.5041 | - |
|
| 1197 |
+
| 4.9811 | 113200 | 0.4905 | - |
|
| 1198 |
+
| 4.9815 | 113210 | 0.4775 | - |
|
| 1199 |
+
| 4.9820 | 113220 | 0.4724 | - |
|
| 1200 |
+
| 4.9824 | 113230 | 0.4744 | - |
|
| 1201 |
+
| 4.9828 | 113240 | 0.4745 | - |
|
| 1202 |
+
| 4.9833 | 113250 | 0.4641 | - |
|
| 1203 |
+
| 4.9837 | 113260 | 0.4567 | - |
|
| 1204 |
+
| 4.9842 | 113270 | 0.4705 | - |
|
| 1205 |
+
| 4.9846 | 113280 | 0.4556 | - |
|
| 1206 |
+
| 4.9850 | 113290 | 0.4655 | - |
|
| 1207 |
+
| 4.9855 | 113300 | 0.4724 | - |
|
| 1208 |
+
| 4.9859 | 113310 | 0.48 | - |
|
| 1209 |
+
| 4.9864 | 113320 | 0.4555 | - |
|
| 1210 |
+
| 4.9868 | 113330 | 0.4755 | - |
|
| 1211 |
+
| 4.9872 | 113340 | 0.497 | - |
|
| 1212 |
+
| 4.9877 | 113350 | 0.467 | - |
|
| 1213 |
+
| 4.9881 | 113360 | 0.4767 | - |
|
| 1214 |
+
| 4.9886 | 113370 | 0.4862 | - |
|
| 1215 |
+
| 4.9890 | 113380 | 0.4905 | - |
|
| 1216 |
+
| 4.9894 | 113390 | 0.4795 | - |
|
| 1217 |
+
| 4.9899 | 113400 | 0.461 | - |
|
| 1218 |
+
| 4.9903 | 113410 | 0.486 | - |
|
| 1219 |
+
| 4.9908 | 113420 | 0.4861 | - |
|
| 1220 |
+
| 4.9912 | 113430 | 0.4627 | - |
|
| 1221 |
+
| 4.9916 | 113440 | 0.4692 | - |
|
| 1222 |
+
| 4.9921 | 113450 | 0.4798 | - |
|
| 1223 |
+
| 4.9925 | 113460 | 0.4725 | - |
|
| 1224 |
+
| 4.9930 | 113470 | 0.4719 | - |
|
| 1225 |
+
| 4.9934 | 113480 | 0.4837 | - |
|
| 1226 |
+
| 4.9938 | 113490 | 0.4652 | - |
|
| 1227 |
+
| 4.9943 | 113500 | 0.4634 | - |
|
| 1228 |
+
| 4.9947 | 113510 | 0.4617 | - |
|
| 1229 |
+
| 4.9952 | 113520 | 0.459 | - |
|
| 1230 |
+
| 4.9956 | 113530 | 0.4685 | - |
|
| 1231 |
+
| 4.9960 | 113540 | 0.4902 | - |
|
| 1232 |
+
| 4.9965 | 113550 | 0.4713 | - |
|
| 1233 |
+
| 4.9969 | 113560 | 0.4819 | - |
|
| 1234 |
+
| 4.9974 | 113570 | 0.4578 | - |
|
| 1235 |
+
| 4.9978 | 113580 | 0.4712 | - |
|
| 1236 |
+
| 4.9982 | 113590 | 0.4552 | - |
|
| 1237 |
+
| 4.9987 | 113600 | 0.4529 | - |
|
| 1238 |
+
| 4.9991 | 113610 | 0.467 | - |
|
| 1239 |
+
| 4.9996 | 113620 | 0.4618 | - |
|
| 1240 |
+
| 5.0 | 113630 | 0.4417 | - |
|
| 1241 |
+
|
| 1242 |
+
</details>
|
| 1243 |
+
|
| 1244 |
+
### Framework Versions
|
| 1245 |
+
- Python: 3.11.8
|
| 1246 |
+
- Sentence Transformers: 3.1.1
|
| 1247 |
+
- Transformers: 4.45.1
|
| 1248 |
+
- PyTorch: 2.5.1.post302
|
| 1249 |
+
- Accelerate: 0.34.2
|
| 1250 |
+
- Datasets: 3.0.0
|
| 1251 |
+
- Tokenizers: 0.20.0
|
| 1252 |
+
|
| 1253 |
+
## Citation
|
| 1254 |
+
|
| 1255 |
+
### BibTeX
|
| 1256 |
+
|
| 1257 |
+
#### Sentence Transformers
|
| 1258 |
+
```bibtex
|
| 1259 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1260 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1261 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1262 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1263 |
+
month = "11",
|
| 1264 |
+
year = "2019",
|
| 1265 |
+
publisher = "Association for Computational Linguistics",
|
| 1266 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1267 |
+
}
|
| 1268 |
+
```
|
| 1269 |
+
|
| 1270 |
+
#### MaskedCachedMultipleNegativesRankingLoss
|
| 1271 |
+
```bibtex
|
| 1272 |
+
@misc{gao2021scaling,
|
| 1273 |
+
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
|
| 1274 |
+
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
|
| 1275 |
+
year={2021},
|
| 1276 |
+
eprint={2101.06983},
|
| 1277 |
+
archivePrefix={arXiv},
|
| 1278 |
+
primaryClass={cs.LG}
|
| 1279 |
+
}
|
| 1280 |
+
```
|
| 1281 |
+
|
| 1282 |
+
<!--
|
| 1283 |
+
## Glossary
|
| 1284 |
+
|
| 1285 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1286 |
+
-->
|
| 1287 |
+
|
| 1288 |
+
<!--
|
| 1289 |
+
## Model Card Authors
|
| 1290 |
+
|
| 1291 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1292 |
+
-->
|
| 1293 |
+
|
| 1294 |
+
<!--
|
| 1295 |
+
## Model Card Contact
|
| 1296 |
+
|
| 1297 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1298 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/data/user_data/thomaszh/models/all-distilroberta-v1-lr2e-4-bs256-nneg3-ml-ne5/final",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"gradient_checkpointing": false,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 768,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"layer_norm_eps": 1e-05,
|
| 17 |
+
"max_position_embeddings": 514,
|
| 18 |
+
"model_type": "roberta",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 6,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.45.1",
|
| 25 |
+
"type_vocab_size": 1,
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vocab_size": 50265
|
| 28 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.1",
|
| 4 |
+
"transformers": "4.45.1",
|
| 5 |
+
"pytorch": "2.5.1.post302"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bc3cdf04fd3c4ebbe5fd00dd72be1630daa95acfbc7867925b19f21c1200f5f
|
| 3 |
+
size 328485128
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"50264": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": false,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"max_length": 128,
|
| 52 |
+
"model_max_length": 512,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "<pad>",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "</s>",
|
| 58 |
+
"stride": 0,
|
| 59 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 60 |
+
"trim_offsets": true,
|
| 61 |
+
"truncation_side": "right",
|
| 62 |
+
"truncation_strategy": "longest_first",
|
| 63 |
+
"unk_token": "<unk>"
|
| 64 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|