File size: 1,301 Bytes
050cab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
library_name: transformers
pipeline_tag: fill-mask
tags: [gpt-bert, babylm, remote-code]
license: other
---
# haznitrama/babybabellm-gpt_bert-sot-main

GPT-BERT style BabyBabyLLM model for language **sot**.

This repository may include both *main* and *EMA* variants.

**Default variant exposed to generic loaders:** `main`

## Variants Available
main

## Files
- model.safetensors (alias of default variant)

## Configuration
```json
{
  "attention_probs_dropout_prob": 0.1,
  "hidden_dropout_prob": 0.1,
  "hidden_size": 384,
  "intermediate_size": 1280,
  "max_position_embeddings": 512,
  "position_bucket_size": 32,
  "num_attention_heads": 6,
  "num_hidden_layers": 12,
  "vocab_size": 8192,
  "layer_norm_eps": 1e-05
}
```
Tokenizer file: `tokenizer_sot_vs8192.json`

## Quick Usage
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_id = 'haznitrama/babybabellm-gpt_bert-sot-main'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)
out = model(**tok('Hello world', return_tensors='pt'))
```

## Notes
- Converted on 2025-09-28T11:13:17.505916+00:00
- Weights are the exact trained parameters; no new layers were initialized.
- Requires `trust_remote_code=True` due to custom architecture.