File size: 20,291 Bytes
050cab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
# Original training architecture (verbatim)
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import _softmax_backward_data as _softmax_backward_data
class Bert(nn.Module):
def __init__(self, config, activation_checkpointing=False):
super().__init__()
self.embedding = Embedding(config)
self.transformer = Encoder(config, activation_checkpointing)
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight)
def get_contextualized(self, input_ids, attention_mask):
static_embeddings, relative_embedding = self.embedding(input_ids)
contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding)
return contextualized_embeddings
def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None):
contextualized_embeddings = self.get_contextualized(input_ids, attention_mask)
if num_masked is None:
subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
gold_labels = masked_lm_labels.flatten()
gold_labels = gold_labels[gold_labels != -100]
loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean()
z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean()
num_tokens = gold_labels.size(0)
return loss, accuracy, z_loss, num_tokens
else:
masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
if masked_subword_prediction is not None:
masked_gold_labels = masked_lm_labels[:, :num_masked].flatten()
masked_gold_labels = masked_gold_labels[masked_gold_labels != -100]
masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels)
masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean()
num_masked_tokens = masked_gold_labels.size(0)
else:
masked_loss = 0.0
masked_z_loss = 0.0
masked_accuracy = 0.0
num_masked_tokens = 0
if causal_subword_prediction is not None:
causal_gold_labels = masked_lm_labels[:, num_masked:].flatten()
causal_gold_labels = causal_gold_labels[causal_gold_labels != -100]
causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels)
causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean()
num_causal_tokens = causal_gold_labels.size(0)
else:
causal_loss = 0.0
causal_z_loss = 0.0
causal_accuracy = 0.0
num_causal_tokens = 0
loss = ratio * masked_loss + (1 - ratio) * causal_loss
z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss
with torch.no_grad():
accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy
num_tokens = num_masked_tokens + num_causal_tokens
return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens
# From https://github.com/epfml/DenseFormer
class InPlaceSetSlice(torch.autograd.Function):
@staticmethod
def forward(ctx, full_tensor, last_slice, x_idx, x_val):
full_tensor[x_idx] = x_val
ctx.x_idx = x_idx
ret = torch.Tensor().to(full_tensor.device)
ret.set_(full_tensor[:x_idx + 1])
return ret
@staticmethod
def backward(ctx, grad_out):
if ctx.x_idx == 0:
return None, None, None, grad_out[ctx.x_idx]
else:
return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx]
def apply_inplace_set(x_acc, x_idx, x_val):
full_tensor, last_slice = x_acc
new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val)
return full_tensor, new_slice
class DWAModules(torch.nn.Module):
def __init__(self, hidden_size, n_blocks):
super().__init__()
self.n_blocks = n_blocks
self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)])
self.accumulator = None
self._init_weights()
def _init_weights(self):
for module in self.alphas:
module.data.zero_()
module.data[-1] = 1.0
def init_accumulator(self, x):
self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None)
self.accumulator = apply_inplace_set(self.accumulator, 0, x)
def forward(self, x, block_idx):
assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first"
self.accumulator = apply_inplace_set(
self.accumulator,
block_idx + 1,
x
)
x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1)
return x
class Encoder(nn.Module):
def __init__(self, config, activation_checkpointing=False):
super().__init__()
self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)])
self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)])
self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2)
for i, layer in enumerate(self.mlp_layers):
layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
self.activation_checkpointing = activation_checkpointing
def forward(self, x, attention_mask, relative_embedding):
self.dwa_modules.init_accumulator(x)
for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)):
x = x + attention_layer(x, attention_mask, relative_embedding)
x = self.dwa_modules(x, block_idx=i * 2)
x = x + mlp_layer(x)
x = self.dwa_modules(x, block_idx=i * 2 + 1)
return x
class MaskClassifier(nn.Module):
def __init__(self, config, subword_embedding):
super().__init__()
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
)
self.initialize(config.hidden_size, subword_embedding)
def initialize(self, hidden_size, embedding):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.nonlinearity[-1].weight = embedding
self.nonlinearity[1].bias.data.zero_()
self.nonlinearity[-1].bias.data.zero_()
def forward(self, x, masked_lm_labels, num_masked=None):
if num_masked is None:
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
x = self.nonlinearity(x)
return x
else:
masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1)
mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1)
if masked_x.size(1) != 0:
masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze())
masked_x = self.nonlinearity(masked_x)
else:
masked_x = None
if causal_x.size(1) != 0:
causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze())
causal_x = self.nonlinearity(causal_x)
else:
causal_x = None
return masked_x, causal_x
class GeGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
x = x * F.gelu(gate, approximate='tanh')
return x
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
GeGLU(),
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
nn.Dropout(config.hidden_dropout_prob)
)
self.initialize(config.hidden_size)
def initialize(self, hidden_size):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, x):
return self.mlp(x)
class MaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(self, x, mask, dim):
self.dim = dim
x.masked_fill_(mask, float('-inf'))
x = torch.softmax(x, self.dim)
x.masked_fill_(mask, 0.0)
self.save_for_backward(x)
return x
@staticmethod
def backward(self, grad_output):
output, = self.saved_tensors
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
return inputGrad, None, None
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = config.hidden_size // config.num_attention_heads
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
position_indices = config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices, persistent=True)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.scale = 1.0 / math.sqrt(3 * self.head_size)
self.initialize()
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
return bucket_pos
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.in_proj_qk.bias.data.zero_()
self.in_proj_vg.bias.data.zero_()
self.out_proj.bias.data.zero_()
def forward(self, hidden_states, attention_mask, relative_embedding):
key_len, batch_size, _ = hidden_states.size()
query_len = key_len
if self.position_indices.size(0) < query_len:
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
position_indices = self.config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)
hidden_states = self.pre_layer_norm(hidden_states)
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
gate = F.gelu(gate)
pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D]
query_pos, key_pos = pos.chunk(2, dim=-1)
query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
context = context * gate
context = self.post_layer_norm(context)
context = self.out_proj(context)
context = self.dropout(context)
return context
class Embedding(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.initialize()
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, input_ids):
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
return word_embedding, relative_embeddings
# HF wrappers that preserve state dict keys and behavior
from transformers import PreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions
from .configuration_gpt_bert import GPTBertConfig
import torch
import torch.nn as nn
class GPTBertForMaskedLM(PreTrainedModel):
config_class = GPTBertConfig
base_model_prefix = 'gpt_bert'
def __init__(self, config: GPTBertConfig):
super().__init__(config)
self.model = Bert(config)
def tie_weights(self):
try:
self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight
except Exception:
pass
return super().tie_weights()
def forward(self, input_ids, attention_mask=None, labels=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
mask_bool = (attention_mask == 0).unsqueeze(1).unsqueeze(1)
static_embeddings, relative_embedding = self.model.embedding(input_ids)
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
static_embeddings = static_embeddings.transpose(0, 1)
contextualized = self.model.transformer(static_embeddings, mask_bool, relative_embedding)
hs = contextualized.transpose(0, 1)
B,S,H = hs.shape
flat = hs.reshape(B*S, H)
logits_flat = self.model.classifier.nonlinearity(flat)
vocab = logits_flat.size(-1)
logits = logits_flat.view(B, S, vocab)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(logits.view(-1, vocab), labels.view(-1))
return MaskedLMOutput(loss=loss, logits=logits)
class GPTBertForCausalLM(PreTrainedModel):
config_class = GPTBertConfig
base_model_prefix = 'gpt_bert'
def __init__(self, config: GPTBertConfig):
super().__init__(config)
self.model = Bert(config)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)}
def forward(self, input_ids, attention_mask=None, labels=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
mask_bool = (attention_mask == 0).unsqueeze(1).unsqueeze(1)
static_embeddings, relative_embedding = self.model.embedding(input_ids)
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
static_embeddings = static_embeddings.transpose(0, 1)
contextualized = self.model.transformer(static_embeddings, mask_bool, relative_embedding)
hs = contextualized.transpose(0, 1)
B,S,H = hs.shape
flat = hs.reshape(B*S, H)
logits_flat = self.model.classifier.nonlinearity(flat)
vocab = logits_flat.size(-1)
logits = logits_flat.view(B, S, vocab)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits)
|