File size: 4,919 Bytes
ef2340c
586d4c7
ca1a830
 
 
 
 
 
 
 
 
 
 
 
 
ef2340c
ca1a830
 
 
 
586d4c7
ca1a830
 
 
 
586d4c7
 
ca1a830
586d4c7
ef2340c
 
586d4c7
ef2340c
 
 
 
586d4c7
ca1a830
586d4c7
 
 
ca1a830
 
ef2340c
ca1a830
 
 
ef2340c
586d4c7
ca1a830
586d4c7
ca1a830
586d4c7
ca1a830
 
 
 
586d4c7
ca1a830
 
 
 
586d4c7
ca1a830
586d4c7
ca1a830
586d4c7
ef2340c
 
 
 
b6aee7b
ca1a830
 
ef2340c
ca1a830
b6aee7b
586d4c7
ef2340c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586d4c7
ef2340c
586d4c7
ef2340c
586d4c7
ef2340c
586d4c7
ef2340c
586d4c7
ef2340c
586d4c7
ef2340c
586d4c7
ef2340c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

---
language:
- en
- code
language_bcp47:
- en
- javascript
license: apache-2.0
tags:
- text-generation
- code
- javascript
- coding-assistant
- fine-tuning
- merged
- unsloth
- gpt-oss
- vllm
base_model: openai/gpt-oss-20b
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: gpt-oss-coder-v0.1-javascript
  results: []
---

# gpt-oss-coder-v0.1-javascript

A **language-specialized coding model for JavaScript**, fine-tuned from OpenAI's open-weight **gpt-oss** base with **very small, curated JS data** using **Unsloth**.  
This release prioritizes **practical code generation quality** over benchmark scores. The model weights have been **merged** and are ready for deployment.

> **Status**: Experimental preview (`v0.1-javascript`)  
> **Focus**: JS coding tasks (function-level completion, small refactors, idiomatic patterns)  
> **Testing**: Currently undergoing validation with vLLM deployment  
> **Note**: This repository contains merged weights, not LoRA adapters

---

## Model Details

- **Model type**: Causal LM (decoder-only), JS-specialized fine-tune  
- **Base model**: `openai/gpt-oss-20b` (open-weight, Apache-2.0)  
- **Fine-tuning**: LoRA via **Unsloth**, weights merged post-training  
- **License**: Apache-2.0 (derivative weights released under Apache-2.0)  
- **Author / Maintainer**: `hokar3361`  
- **Intended Languages**: JavaScript (ES6+); English prompts recommended
- **Weight Format**: Merged (full model weights)

---

## Intended Use & Limitations

### Intended Use
- Code completion and synthesis for **JavaScript**
- Small refactors, idiomatic rewrites, test scaffolding, JSDoc/docstrings
- Snippet-level reasoning and bug fixes

### Out of Scope / Limitations
- Not a substitute for static analysis, linters, or security review
- May hallucinate APIs or types; verify before production use
- Trained on **small** domain data → expect gaps on rare frameworks or edge APIs

---

## Quickstart

### 1. Start vLLM Server

Since this repository contains **merged weights**, you can run directly with vLLM:

```bash
vllm serve hokar3361/gpt-oss-coderjs-v0.1 \
  --async-scheduling \
  --max-model-len 16000 \
  --gpu-memory-utilization 0.90
```

**Recommended**: Use `--max-model-len 16000` for optimal context handling.

### 2. Client Usage (Recommended)

Use the **OpenAI Python client** to call the vLLM server:

```python
from openai import OpenAI

# Point to your vLLM server
client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="dummy"  # vLLM doesn't require auth by default
)

response = client.completions.create(
    model="hokar3361/gpt-oss-coderjs-v0.1",
    prompt="// JavaScript function to validate email addresses\nfunction validateEmail(email) {",
    # DO NOT specify temperature or max_tokens - let the model use defaults
)

print(response.choices[0].text)
```

**Important**: 
- **Do not specify** `temperature` or `max_tokens` parameters - the model performs best with default values
- Use the OpenAI Python client for best compatibility and stability

---

## Testing & Validation

### Current Status
The model is currently being validated using vLLM deployment. Initial testing shows **improved performance** compared to pre-fine-tuning baseline.

### Evaluation Methodology
- **Test Set**: 50 programming questions from GitHub and Stack Overflow
- **Judges**: GPT-5 and Claude Opus for response quality assessment
- **Preliminary Results**: The fine-tuned model demonstrates better code generation quality on JavaScript-specific tasks compared to the base model
- **Note**: Full benchmark validation is still in progress

---

## Acknowledgements

This work was made possible thanks to the open-weight release of **gpt-oss** by OpenAI, which provided a strong foundation under the Apache-2.0 license.

Special thanks to the open-source community around **Unsloth** for enabling memory-efficient and rapid LoRA fine-tuning on limited hardware.

We also thank the **Hugging Face** and **vLLM** ecosystems for lowering the barrier to experimentation.

---

## Disclaimer & Experimental Status

This model (`v0.1-javascript`) is highly experimental:

- **Small data**: Fine-tuned on a very small JavaScript-focused dataset, mainly to validate the workflow and feasibility of language specialization.

- **Not production-ready**: The model may generate incomplete, insecure, or non-idiomatic code; do not rely on it for production use without careful review.

- **Testing in progress**: While initial results from GPT-5 and Opus evaluation show improvements, comprehensive benchmarking is ongoing.

- **Early stage**: This is only an initial exploration; future versions with larger, more diverse training corpora are expected to improve stability and coverage.

We share this release to contribute to the community and gather early feedback.  
**Use responsibly, validate outputs, and treat this as a proof-of-concept.**