File size: 4,919 Bytes
ef2340c 586d4c7 ca1a830 ef2340c ca1a830 586d4c7 ca1a830 586d4c7 ca1a830 586d4c7 ef2340c 586d4c7 ef2340c 586d4c7 ca1a830 586d4c7 ca1a830 ef2340c ca1a830 ef2340c 586d4c7 ca1a830 586d4c7 ca1a830 586d4c7 ca1a830 586d4c7 ca1a830 586d4c7 ca1a830 586d4c7 ca1a830 586d4c7 ef2340c b6aee7b ca1a830 ef2340c ca1a830 b6aee7b 586d4c7 ef2340c 586d4c7 ef2340c 586d4c7 ef2340c 586d4c7 ef2340c 586d4c7 ef2340c 586d4c7 ef2340c 586d4c7 ef2340c 586d4c7 ef2340c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
language:
- en
- code
language_bcp47:
- en
- javascript
license: apache-2.0
tags:
- text-generation
- code
- javascript
- coding-assistant
- fine-tuning
- merged
- unsloth
- gpt-oss
- vllm
base_model: openai/gpt-oss-20b
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: gpt-oss-coder-v0.1-javascript
results: []
---
# gpt-oss-coder-v0.1-javascript
A **language-specialized coding model for JavaScript**, fine-tuned from OpenAI's open-weight **gpt-oss** base with **very small, curated JS data** using **Unsloth**.
This release prioritizes **practical code generation quality** over benchmark scores. The model weights have been **merged** and are ready for deployment.
> **Status**: Experimental preview (`v0.1-javascript`)
> **Focus**: JS coding tasks (function-level completion, small refactors, idiomatic patterns)
> **Testing**: Currently undergoing validation with vLLM deployment
> **Note**: This repository contains merged weights, not LoRA adapters
---
## Model Details
- **Model type**: Causal LM (decoder-only), JS-specialized fine-tune
- **Base model**: `openai/gpt-oss-20b` (open-weight, Apache-2.0)
- **Fine-tuning**: LoRA via **Unsloth**, weights merged post-training
- **License**: Apache-2.0 (derivative weights released under Apache-2.0)
- **Author / Maintainer**: `hokar3361`
- **Intended Languages**: JavaScript (ES6+); English prompts recommended
- **Weight Format**: Merged (full model weights)
---
## Intended Use & Limitations
### Intended Use
- Code completion and synthesis for **JavaScript**
- Small refactors, idiomatic rewrites, test scaffolding, JSDoc/docstrings
- Snippet-level reasoning and bug fixes
### Out of Scope / Limitations
- Not a substitute for static analysis, linters, or security review
- May hallucinate APIs or types; verify before production use
- Trained on **small** domain data → expect gaps on rare frameworks or edge APIs
---
## Quickstart
### 1. Start vLLM Server
Since this repository contains **merged weights**, you can run directly with vLLM:
```bash
vllm serve hokar3361/gpt-oss-coderjs-v0.1 \
--async-scheduling \
--max-model-len 16000 \
--gpu-memory-utilization 0.90
```
**Recommended**: Use `--max-model-len 16000` for optimal context handling.
### 2. Client Usage (Recommended)
Use the **OpenAI Python client** to call the vLLM server:
```python
from openai import OpenAI
# Point to your vLLM server
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="dummy" # vLLM doesn't require auth by default
)
response = client.completions.create(
model="hokar3361/gpt-oss-coderjs-v0.1",
prompt="// JavaScript function to validate email addresses\nfunction validateEmail(email) {",
# DO NOT specify temperature or max_tokens - let the model use defaults
)
print(response.choices[0].text)
```
**Important**:
- **Do not specify** `temperature` or `max_tokens` parameters - the model performs best with default values
- Use the OpenAI Python client for best compatibility and stability
---
## Testing & Validation
### Current Status
The model is currently being validated using vLLM deployment. Initial testing shows **improved performance** compared to pre-fine-tuning baseline.
### Evaluation Methodology
- **Test Set**: 50 programming questions from GitHub and Stack Overflow
- **Judges**: GPT-5 and Claude Opus for response quality assessment
- **Preliminary Results**: The fine-tuned model demonstrates better code generation quality on JavaScript-specific tasks compared to the base model
- **Note**: Full benchmark validation is still in progress
---
## Acknowledgements
This work was made possible thanks to the open-weight release of **gpt-oss** by OpenAI, which provided a strong foundation under the Apache-2.0 license.
Special thanks to the open-source community around **Unsloth** for enabling memory-efficient and rapid LoRA fine-tuning on limited hardware.
We also thank the **Hugging Face** and **vLLM** ecosystems for lowering the barrier to experimentation.
---
## Disclaimer & Experimental Status
This model (`v0.1-javascript`) is highly experimental:
- **Small data**: Fine-tuned on a very small JavaScript-focused dataset, mainly to validate the workflow and feasibility of language specialization.
- **Not production-ready**: The model may generate incomplete, insecure, or non-idiomatic code; do not rely on it for production use without careful review.
- **Testing in progress**: While initial results from GPT-5 and Opus evaluation show improvements, comprehensive benchmarking is ongoing.
- **Early stage**: This is only an initial exploration; future versions with larger, more diverse training corpora are expected to improve stability and coverage.
We share this release to contribute to the community and gather early feedback.
**Use responsibly, validate outputs, and treat this as a proof-of-concept.** |