neumannrf commited on
Commit
a2a61ab
·
verified ·
1 Parent(s): a523373

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -1
README.md CHANGED
@@ -5,6 +5,7 @@ datasets:
5
  pipeline_tag: graph-ml
6
  tags:
7
  - chemistry
 
8
  ---
9
  # Position-based Equivariant Graph Neural Network (`pos-egnn`)
10
  This repository contains PyTorch source code for loading and performing inference using the `pos-egnn`, a foundation model for Chemistry and Materials.
@@ -22,4 +23,4 @@ We present `pos-egnn`, a Position-based Equivariant Graph Neural Network foundat
22
 
23
  Besides the model weigths `pos-egnn.v1-6M.pt` (download from [HuggingFace](https://huggingface.co/ibm-research/materials.pos-egnn)), we also provide an `example.ipynb` notebook (download from [GitHub](https://github.com/ibm/materials)), which demonstrates how to perform inference, feature extraction and molecular dynamics simulation with the model.
24
 
25
- For more information, please reach out to rneumann@br.ibm.com and/or flaviu.cipcigan@ibm.com
 
5
  pipeline_tag: graph-ml
6
  tags:
7
  - chemistry
8
+ - diffusers
9
  ---
10
  # Position-based Equivariant Graph Neural Network (`pos-egnn`)
11
  This repository contains PyTorch source code for loading and performing inference using the `pos-egnn`, a foundation model for Chemistry and Materials.
 
23
 
24
  Besides the model weigths `pos-egnn.v1-6M.pt` (download from [HuggingFace](https://huggingface.co/ibm-research/materials.pos-egnn)), we also provide an `example.ipynb` notebook (download from [GitHub](https://github.com/ibm/materials)), which demonstrates how to perform inference, feature extraction and molecular dynamics simulation with the model.
25
 
26
+ For more information, please reach out to rneumann@br.ibm.com and/or flaviu.cipcigan@ibm.com