File size: 10,210 Bytes
a5aafdb a277370 a5aafdb a277370 a5aafdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.configuration_utils import PretrainedConfig
from transformers import AutoConfig
class InternS1VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InternS1VisionModel`]. It is used to instantiate an InternS1VisionModel
model according to the specified arguments, defining the model architecture.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to add a bias to the queries, keys and values.
use_qk_norm (`bool`, *optional*, defaults to `False`):
Whether to apply normalization to the queries and keys before the attention operation.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
Dropout probability for attention weights.
projection_dropout (`float`, *optional*, defaults to 0.0):
Dropout probability for the projection layer.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The type of normalization to use in the encoder. Can be `"layer_norm"` or `"rms_norm"`.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`int` or `list[int]`, *optional*, defaults to `[448, 448]`):
The size (resolution) of each image.
patch_size (`int` or `list[int]`, *optional*, defaults to `[14, 14]`):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
use_mask_token (`bool`, *optional*, defaults to `False`):
Whether to use a mask token for masked image modeling.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether to use BERT-style absolute position embeddings.
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
use_mean_pooling (`bool`, *optional*, defaults to `True`):
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
CLS token, before applying the classification head.
Example:
```python
>>> from transformers import InternS1VisionConfig, InternS1VisionModel
>>> # Initializing a InternS1VisionModel
>>> configuration = InternS1VisionConfig()
>>> # Initializing a model (with random weights) from configuration
>>> model = InternS1VisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "interns1_vision"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
attention_bias=False,
use_qk_norm=False,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_dropout=0.0,
projection_dropout=0.0,
initializer_range=0.02,
norm_type="layer_norm",
layer_norm_eps=1e-06,
image_size=[448, 448],
patch_size=[14, 14],
num_channels=3,
use_mask_token=False,
use_absolute_position_embeddings=True,
layer_scale_init_value=0.1,
use_mean_pooling=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.attention_bias = attention_bias
self.use_qk_norm = use_qk_norm
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_dropout = attention_dropout
self.projection_dropout = projection_dropout
self.initializer_range = initializer_range
self.norm_type = norm_type
self.layer_norm_eps = layer_norm_eps
image_size = image_size if isinstance(image_size, (list, tuple)) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, (list, tuple)) else (patch_size, patch_size)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.use_mask_token = use_mask_token
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.layer_scale_init_value = layer_scale_init_value
self.use_mean_pooling = use_mean_pooling
class InternS1Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InternS1ForConditionalGeneration`]. It is used to instantiate a
InternS1 model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `InternVisonConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `Qwen2Config`):
The config object or dictionary of the text backbone.
image_token_id (`int`, *optional*, defaults to 151667):
The image token index to encode the image prompt.
image_seq_length (`int`, *optional*, defaults to 256):
Number of image tokens to use per image patch.
downsample_ratio (`float`, *optional*, defaults to 0.5):
Factor by which to downsample the image.
projector_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the projector.
vision_feature_layer (`int`, *optional*, defaults to -1):
The index of the layer to use as the image features.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
```python
>>> from transformers import InternS1ForConditionalGeneration, InternS1Config
>>> # Initializing a InternS1 style configuration
>>> configuration = InternS1Config()
>>> # Initializing a model (with random weights) from configuration
>>> model = InternS1ForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "interns1"
sub_configs = {"text_config": AutoConfig, "vision_config": InternS1VisionConfig}
def __init__(
self,
vision_config=None,
text_config=None,
image_token_id=151667,
image_seq_length=256,
downsample_ratio=0.5,
projector_hidden_act="gelu",
vision_feature_layer=-1,
vision_feature_select_strategy="default",
**kwargs,
):
from transformers import CONFIG_MAPPING
self.image_token_id = image_token_id
self.image_seq_length = image_seq_length
self.downsample_ratio = downsample_ratio
self.projector_hidden_act = projector_hidden_act
self.vision_feature_layer = vision_feature_layer
self.vision_feature_select_strategy = vision_feature_select_strategy
if isinstance(vision_config, dict):
self.vision_config = InternS1VisionConfig(**vision_config)
elif isinstance(vision_config, InternS1VisionConfig):
self.vision_config = vision_config
elif vision_config is None:
self.vision_config = InternS1VisionConfig()
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2" # todo
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["qwen2"]() # todo
self.text_config = text_config
super().__init__(**kwargs)
__all__ = ["InternS1VisionConfig", "InternS1Config"]
|