File size: 1,133 Bytes
f4ba066 25f52b2 7478a24 f4ba066 7478a24 f4ba066 7478a24 f4ba066 7478a24 f4ba066 7478a24 f4ba066 bb52c0c f4ba066 bb52c0c f4ba066 bb52c0c f4ba066 bb52c0c f4ba066 bb52c0c f4ba066 bb52c0c db2152c 7478a24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: apache-2.0
base_model:
- openai/whisper-base
pipeline_tag: automatic-speech-recognition
language:
- en
- ru
---
OpenAI Whisper base [model](https://huggingface.co/openai/whisper-base) converted to ONNX format for [onnx-asr](https://github.com/istupakov/onnx-asr).
Install onnx-asr
```shell
pip install onnx-asr[cpu,hub]
```
Load whisper-base model and recognize wav file
```py
import onnx_asr
model = onnx_asr.load_model("whisper-base")
print(model.recognize("test.wav"))
```
## Model export
Read onnxruntime [instruction](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/whisper/README.md) for convert Whisper to ONNX.
Download model and export with *Beam Search* and *Forced Decoder Input Ids*:
```shell
python3 -m onnxruntime.transformers.models.whisper.convert_to_onnx -m openai/whisper-base --output ./whisper-onnx --use_forced_decoder_ids --optimize_onnx --precision fp32
```
Save tokenizer config
```py
from transformers import WhisperTokenizer
processor = WhisperTokenizer.from_pretrained("openai/whisper-base")
processor.save_pretrained("whisper-onnx")
``` |