Add model
Browse files- README.md +98 -1
- config.json +31 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +9 -0
- spm.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
README.md
CHANGED
|
@@ -1,3 +1,100 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: ja
|
| 3 |
+
license: cc-by-sa-4.0
|
| 4 |
+
library_name: transformers
|
| 5 |
+
datasets:
|
| 6 |
+
- cc100
|
| 7 |
+
- mc4
|
| 8 |
+
- oscar
|
| 9 |
+
- wikipedia
|
| 10 |
+
- izumi-lab/cc100-ja
|
| 11 |
+
- izumi-lab/mc4-ja-filter-ja-normal
|
| 12 |
+
- izumi-lab/oscar2301-ja-filter-ja-normal
|
| 13 |
+
- izumi-lab/wikipedia-ja-20230720
|
| 14 |
+
- izumi-lab/wikinews-ja-20230728
|
| 15 |
+
|
| 16 |
+
widget:
|
| 17 |
+
- text: 東京大学で[MASK]の研究をしています。
|
| 18 |
+
|
| 19 |
---
|
| 20 |
+
|
| 21 |
+
# DeBERTa V2 base Japanese
|
| 22 |
+
|
| 23 |
+
This is a [DeBERTaV2](https://github.com/microsoft/DeBERTa) model pretrained on Japanese texts.
|
| 24 |
+
The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/releases/tag/v2.2.1).
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## How to use
|
| 28 |
+
|
| 29 |
+
You can use this model for masked language modeling as follows:
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("izumi-lab/deberta-v2-base-japanese")
|
| 34 |
+
model = AutoModelForMaskedLM.from_pretrained("izumi-lab/deberta-v2-base-japanese")
|
| 35 |
+
...
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Tokenization
|
| 40 |
+
|
| 41 |
+
The model uses a sentencepiece-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using [sentencepiece](https://github.com/google/sentencepiece).
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Training Data
|
| 45 |
+
|
| 46 |
+
We used the following corpora for pre-training:
|
| 47 |
+
|
| 48 |
+
- [Japanese portion of CC-100](https://huggingface.co/datasets/izumi-lab/cc100-ja)
|
| 49 |
+
- [Japanese portion of mC4](https://huggingface.co/datasets/izumi-lab/mc4-ja-filter-ja-normal)
|
| 50 |
+
- [Japanese portion of OSCAR2301](izumi-lab/oscar2301-ja-filter-ja-normal)
|
| 51 |
+
- [Japanese Wikipedia as of July 20, 2023](https://huggingface.co/datasets/izumi-lab/wikipedia-ja-20230720)
|
| 52 |
+
- [Japanese Wikinews as of July 28, 2023](https://huggingface.co/datasets/izumi-lab/wikinews-ja-20230728)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
We pretrained with the corpora mentioned above for 900k steps, and additionally pretrained with the following financial corpora for 100k steps:
|
| 56 |
+
- Summaries of financial results from October 9, 2012, to December 31, 2022
|
| 57 |
+
- Securities reports from February 8, 2018, to December 31, 2022
|
| 58 |
+
- News articles
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
## Training Parameters
|
| 62 |
+
|
| 63 |
+
learning_rate in parentheses indicate the learning rate for additional pre-training with the financial corpus.
|
| 64 |
+
- learning_rate: 2.4e-4 (6e-5)
|
| 65 |
+
- total_train_batch_size: 2,016
|
| 66 |
+
- max_seq_length: 512
|
| 67 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
| 68 |
+
- lr_scheduler_type: linear schedule with warmup
|
| 69 |
+
- training_steps: 1,000,000
|
| 70 |
+
- warmup_steps: 100,000
|
| 71 |
+
- precision: FP16
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
## Fine-tuning on General NLU tasks
|
| 75 |
+
|
| 76 |
+
We evaluate our model with the average of five seeds.
|
| 77 |
+
Other models are from [JGLUE repository](https://github.com/yahoojapan/JGLUE)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
| Model | JSTS | JNLI | JCommonsenseQA |
|
| 81 |
+
|-------------------------------|------------------|-----------|----------------|
|
| 82 |
+
| | Pearson/Spearman | acc | acc |
|
| 83 |
+
| **DeBERTaV2 base** | **0.890/0.846** | **0.xxx** | **0.859** |
|
| 84 |
+
| Waseda RoBERTa base | 0.913/0.873 | 0.895 | 0.840 |
|
| 85 |
+
| Tohoku BERT base | 0.909/0.868 | 0.899 | 0.808 |
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
## Citation
|
| 89 |
+
|
| 90 |
+
TBA
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
## Licenses
|
| 94 |
+
|
| 95 |
+
The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/).
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
## Acknowledgments
|
| 99 |
+
|
| 100 |
+
This work was supported in part by JSPS KAKENHI Grant Number JP21K12010, and the JST-Mirai Program Grant Number JPMJMI20B1, Japan.
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"DebertaV2ForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"hidden_act": "gelu",
|
| 7 |
+
"hidden_dropout_prob": 0.1,
|
| 8 |
+
"hidden_size": 768,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"intermediate_size": 3072,
|
| 11 |
+
"layer_norm_eps": 1e-07,
|
| 12 |
+
"max_position_embeddings": 512,
|
| 13 |
+
"max_relative_positions": -1,
|
| 14 |
+
"model_type": "deberta-v2",
|
| 15 |
+
"norm_rel_ebd": "layer_norm",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 1,
|
| 19 |
+
"pooler_dropout": 0,
|
| 20 |
+
"pooler_hidden_act": "gelu",
|
| 21 |
+
"pooler_hidden_size": 768,
|
| 22 |
+
"pos_att_type": "p2c|c2p",
|
| 23 |
+
"position_biased_input": false,
|
| 24 |
+
"position_buckets": 256,
|
| 25 |
+
"relative_attention": true,
|
| 26 |
+
"share_att_key": true,
|
| 27 |
+
"torch_dtype": "float16",
|
| 28 |
+
"transformers_version": "4.31.0",
|
| 29 |
+
"type_vocab_size": 0,
|
| 30 |
+
"vocab_size": 32000
|
| 31 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:596337893657556b383e9813945f6cb3a990f5e0e90530d64b1d49941cd2ca37
|
| 3 |
+
size 542676485
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "[CLS]",
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"eos_token": "[SEP]",
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"pad_token": "[PAD]",
|
| 7 |
+
"sep_token": "[SEP]",
|
| 8 |
+
"unk_token": "[UNK]"
|
| 9 |
+
}
|
spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8e9cbe24bc1bb25ef87a4371c222666539011d1a749cd4858a88a64771acc1a
|
| 3 |
+
size 804800
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "[CLS]",
|
| 3 |
+
"clean_up_tokenization_spaces": true,
|
| 4 |
+
"cls_token": "[CLS]",
|
| 5 |
+
"do_lower_case": false,
|
| 6 |
+
"eos_token": "[SEP]",
|
| 7 |
+
"mask_token": "[MASK]",
|
| 8 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 9 |
+
"pad_token": "[PAD]",
|
| 10 |
+
"sep_token": "[SEP]",
|
| 11 |
+
"sp_model_kwargs": {},
|
| 12 |
+
"split_by_punct": false,
|
| 13 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
| 14 |
+
"unk_token": "[UNK]"
|
| 15 |
+
}
|