Jose Carlos commited on
Commit
44ae716
·
1 Parent(s): 5a3f750

My first base_lines3 model, trained in lunar_lander... :)

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.38 +/- 16.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4d2deb2c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4d2deb2cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4d2deb2d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4d2deb2dd0>", "_build": "<function ActorCriticPolicy._build at 0x7d4d2deb2e60>", "forward": "<function ActorCriticPolicy.forward at 0x7d4d2deb2ef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4d2deb2f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4d2deb3010>", "_predict": "<function ActorCriticPolicy._predict at 0x7d4d2deb30a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4d2deb3130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4d2deb31c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4d2deb3250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4d2de5ec80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701061875751419624, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYVAz12Siq8qkRZvKegFT0MqI69SybwPQAAgD8AAIA/RtAVPiOIvT62iR6+iZKtvgps/7sVDnq9AAAAAAAAAADNPAI8SGOiuuL10jZLkfk038rTuo1b+7UAAIA/AACAP82MEbpUmoU96PFOPczFhb6JN9E81l2hPAAAAAAAAAAAM4FpvR+t2rnP6ou6wmh4tkmtRLvGleM1AACAPwAAgD9mll67j6ZmutPJk7hbU2W2y/nVufQLrTcAAIA/AACAPybcnD32/Da6d3cuumA4TzYp9my6QrtKOQAAgD8AAIA/ZsLwu49OXrpalvw7QgkoOF4ITrk2sIq2AACAPwAAgD9a+aY9SMeeuqtco7vTZ0Y4uH3aOR7OpTYAAIA/AACAP3O2AT6kUl674RQ6OmB2Xre+4Yi8a0VouQAAgD8AAIA/zXg9PI8uG7p4kSO43KAjsw+0XboGuT03AACAPwAAgD9abYK96fafPvSyOz1x+YW+AuPAu3tFvzsAAAAAAAAAAM3cx7oULo66LkCCuoB+pLbkIOo6IhWVOQAAgD8AAIA/mpiVPFyLVrqMqre6XVxdtlZ2bzrAUNM5AACAPwAAgD8zF5Y8j7Zuupjn67oeHeG1/zaIu4RFCjoAAIA/AACAPzMY1jyFw9652jqtuokYZ7KIkrW5XQPMOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJzRcVxjrmMAWyUTegDjAF0lEdAppedOEdvKnV9lChoBkdAZnyzOX3QD2gHTegDaAhHQKaZKYpDu0F1fZQoaAZHQGPiuFQEZBNoB03oA2gIR0CmmWg6dUbUdX2UKGgGR0BlsqA8SwnqaAdN6ANoCEdAppl+nhsImnV9lChoBkdARxGVkc0cfmgHTQkBaAhHQKaflyrgflp1fZQoaAZHQFHxv/zasZJoB0vVaAhHQKagakeIVM51fZQoaAZHQEhyevpyIYZoB0veaAhHQKahNh4t6HF1fZQoaAZHQGKSo7V8Ti9oB03oA2gIR0CmojZXEIgOdX2UKGgGR0Bb5Q2/BWPtaAdN6ANoCEdApqREO09hZ3V9lChoBkdAYyL7hNucc2gHTegDaAhHQKambZFocrB1fZQoaAZHQGE5G3F1jiJoB03oA2gIR0CmpoV89fTkdX2UKGgGR0BjM12q1gIAaAdN6ANoCEdApqojoyKvV3V9lChoBkdAZ6WInBtUGWgHTegDaAhHQKaq3Hn2ZiN1fZQoaAZHQGZDjPfKp1loB03oA2gIR0Cmq2rJKaoddX2UKGgGR0BiKrNnoPkJaAdN6ANoCEdApqwPV9Wp63V9lChoBkdAYm2/s3Q2M2gHTegDaAhHQKa7xfShJy11fZQoaAZHQGeRl6iTMaFoB03oA2gIR0Cmvlv+XJHRdX2UKGgGR0BjGoAZKnNxaAdN6ANoCEdApr+mXw9aEHV9lChoBkdAYfOKZ2IO6WgHTegDaAhHQKbCDWPtD2J1fZQoaAZHQF6e2Xsw+MZoB03oA2gIR0CmxI5pSJj2dX2UKGgGR0BjzKMglnh9aAdN6ANoCEdApsycdNnGsHV9lChoBkdAZHNhWHUMHGgHTegDaAhHQKbNPRUm2LJ1fZQoaAZHQGW8CxeLNwBoB03oA2gIR0Cmzc/dqL0jdX2UKGgGR0BhWb3XZoPDaAdN6ANoCEdAps5/BxgiNnV9lChoBkdAZScAYHgP3GgHTegDaAhHQKbQASr5qM51fZQoaAZHQGctmXokiUxoB03oA2gIR0Cm0Zhh6SkkdX2UKGgGR0Bjxu5J9RaYaAdN6ANoCEdAptGo2AG0NXV9lChoBkdARyMW43FUAGgHS9poCEdAptNXWvr4WXV9lChoBkdAYcEBQN0/4mgHTegDaAhHQKbUQDdxhlV1fZQoaAZHQGCU2g3974VoB03oA2gIR0Cm1OaLOzIFdX2UKGgGR0BlUxFPSDywaAdN6ANoCEdAptV9IuoP1HV9lChoBkdAY+KQxN7BwmgHTegDaAhHQKbWJB0p3HJ1fZQoaAZHQF/DU8mrsB1oB03oA2gIR0Cm6f8Pe54GdX2UKGgGR0BkIwllbu+iaAdN6ANoCEdApu3h3cHnlnV9lChoBkdAZKtsXSBsh2gHTegDaAhHQKbu5nnuAqd1fZQoaAZHQGaSASWZ7XxoB03oA2gIR0Cm8LjQqqffdX2UKGgGR0BkDLpX6qKhaAdN6ANoCEdApvKL67/XG3V9lChoBkdARoittALRbGgHS9toCEdApvSFuNxVAHV9lChoBkdATN+oP07KaGgHS+9oCEdApvecu+RHPXV9lChoBkdAYGz1qWTouGgHTegDaAhHQKb4S2nbZe11fZQoaAZHQGhoUXYUWVNoB03oA2gIR0Cm+MYXoC+2dX2UKGgGR0Bloz/6wdKeaAdN6ANoCEdApvlfuqm0mnV9lChoBkdASIBjQRf4RGgHTQcBaAhHQKb5+Py08eV1fZQoaAZHQGDCMCkoF3ZoB03oA2gIR0Cm+qwX668QdX2UKGgGR0AbA7PppvgnaAdL4GgIR0Cm+r93jdYXdX2UKGgGR0BnEUroW56MaAdN6ANoCEdApvveMwUQCnV9lChoBkdAYagZZSvTw2gHTegDaAhHQKb76tYjjaR1fZQoaAZHQGa9bgjyFwloB03oA2gIR0Cm/Spb2USqdX2UKGgGR0BdOh19v0iAaAdN6ANoCEdApv3TImw7knV9lChoBkdAYTpvxYq5LGgHTegDaAhHQKb+V0IToMd1fZQoaAZHQGOGgmJFb3ZoB03oA2gIR0Cm/s9adMCcdX2UKGgGR0Bj+EJ0GNaRaAdN6ANoCEdApv9ZjWkJr3V9lChoBkfACtr1M/QjU2gHS/FoCEdApxDXOjZcs3V9lChoBkdAYdli3G4qgGgHTegDaAhHQKcTNOHnEEV1fZQoaAZHQF/2r5IpYtBoB03oA2gIR0CnFvUMPSUkdX2UKGgGR0BlQq+N96ToaAdN6ANoCEdApyFK3PRiPXV9lChoBkdAYtAxj8UEgWgHTegDaAhHQKciHacI7eV1fZQoaAZHQGDiSrPt2LZoB03oA2gIR0CnItawMYuTdX2UKGgGR0BikN8qnWJ8aAdN6ANoCEdApyO92JSBLHV9lChoBkdAYIcO09hZyWgHTegDaAhHQKckjVOsT391fZQoaAZHQGQIA1WKdhBoB03oA2gIR0CnJYQGOdXldX2UKGgGR0BmSV/YraufaAdN6ANoCEdApyWl8eCCjHV9lChoBkdAYstIV/MGHGgHTegDaAhHQKcnFFYMfA91fZQoaAZHQGeqPq9oN/hoB03oA2gIR0CnJyYtpVS5dX2UKGgGR0Be9MsUZeiSaAdN6ANoCEdApyjXEVFhHHV9lChoBkdAXf36XSjQA2gHTegDaAhHQKcpx/rjYI11fZQoaAZHQGESO0kWykdoB03oA2gIR0CnKzvP1L8KdX2UKGgGR0BlakYdhiLEaAdN6ANoCEdApywcofCAMHV9lChoBkdAXh5X0XgtOGgHTegDaAhHQKc9shi9Zid1fZQoaAZHQGE0QDmr8zhoB03oA2gIR0CnQBQGwA2idX2UKGgGR0Bng+HUMG5daAdN6ANoCEdAp0QakAPuonV9lChoBkdAYL+Rs/IKdGgHTegDaAhHQKdR1bGm1pl1fZQoaAZHQGLF00vXbudoB03oA2gIR0CnUp5ylvZRdX2UKGgGR0Bl4CKJl8PXaAdN6ANoCEdAp1MtpCa7VnV9lChoBkdAY6zkKeCkGmgHTegDaAhHQKdT1d7fHgh1fZQoaAZHQGLjMWfseGRoB03oA2gIR0CnVHh3qzJIdX2UKGgGR0BnLsYuTRplaAdN6ANoCEdAp1U+LpA2RHV9lChoBkdAZnwRTS9dvGgHTegDaAhHQKdVU93bEgp1fZQoaAZHQFySymALApNoB03oA2gIR0CnVoEvK2a2dX2UKGgGR0BllnLvCuU2aAdN6ANoCEdAp1aOPvKEFnV9lChoBkdAYxUJuVHFxWgHTegDaAhHQKdX+ouwost1fZQoaAZHQGS2ZoXbdrRoB03oA2gIR0CnWKxxT850dX2UKGgGR0BlaCNZNfw7aAdN6ANoCEdAp1mrLZBcA3V9lChoBkdAY6kzUI9kjGgHTegDaAhHQKdaN1wHZ9N1fZQoaAZHQGOViGFi8WdoB03oA2gIR0CnbE2cz67/dX2UKGgGR0BfzL+YMOPOaAdN6ANoCEdAp2+D6nBLwnV9lChoBkdAY66teUpuuWgHTegDaAhHQKd0VI1+AmR1fZQoaAZHQGVcGGEf1YhoB03oA2gIR0Cnfpj+BH09dX2UKGgGR0Bj9JsImgJ1aAdN6ANoCEdAp39pf6XSjXV9lChoBkdAYvV3FDOTq2gHTegDaAhHQKd//FTefqZ1fZQoaAZHQF+GCV8kUsZoB03oA2gIR0CngKRnezlcdX2UKGgGR0Be7ACGN70GaAdN6ANoCEdAp4FI1pCa7XV9lChoBkdAYSKbDuSfUWgHTegDaAhHQKeCDGQ0XP91fZQoaAZHQF7MHJtBOYZoB03oA2gIR0CngiBdD6WPdX2UKGgGR0Bi8IIIF/x2aAdN6ANoCEdAp4MrAi3XqnV9lChoBkdAZbkHrQgLZ2gHTegDaAhHQKeDN0OEug91fZQoaAZHQF0A7XxvvSdoB03oA2gIR0CnhIrwF1SwdX2UKGgGR0BjQuzOX3QEaAdN6ANoCEdAp4U6Kcd5p3V9lChoBkdAXfMA3kxREWgHTegDaAhHQKeGQT9sJpp1fZQoaAZHQGKoANwzch1oB03oA2gIR0CnhtnNX5nEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eafddb557201efe4bc4fad118e71948668a4d3f9835e348eccd0d70c9befb702
3
+ size 148046
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4d2deb2c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4d2deb2cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4d2deb2d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4d2deb2dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d4d2deb2e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d4d2deb2ef0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4d2deb2f80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4d2deb3010>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d4d2deb30a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4d2deb3130>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4d2deb31c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4d2deb3250>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d4d2de5ec80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701061875751419624,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYVAz12Siq8qkRZvKegFT0MqI69SybwPQAAgD8AAIA/RtAVPiOIvT62iR6+iZKtvgps/7sVDnq9AAAAAAAAAADNPAI8SGOiuuL10jZLkfk038rTuo1b+7UAAIA/AACAP82MEbpUmoU96PFOPczFhb6JN9E81l2hPAAAAAAAAAAAM4FpvR+t2rnP6ou6wmh4tkmtRLvGleM1AACAPwAAgD9mll67j6ZmutPJk7hbU2W2y/nVufQLrTcAAIA/AACAPybcnD32/Da6d3cuumA4TzYp9my6QrtKOQAAgD8AAIA/ZsLwu49OXrpalvw7QgkoOF4ITrk2sIq2AACAPwAAgD9a+aY9SMeeuqtco7vTZ0Y4uH3aOR7OpTYAAIA/AACAP3O2AT6kUl674RQ6OmB2Xre+4Yi8a0VouQAAgD8AAIA/zXg9PI8uG7p4kSO43KAjsw+0XboGuT03AACAPwAAgD9abYK96fafPvSyOz1x+YW+AuPAu3tFvzsAAAAAAAAAAM3cx7oULo66LkCCuoB+pLbkIOo6IhWVOQAAgD8AAIA/mpiVPFyLVrqMqre6XVxdtlZ2bzrAUNM5AACAPwAAgD8zF5Y8j7Zuupjn67oeHeG1/zaIu4RFCjoAAIA/AACAPzMY1jyFw9652jqtuokYZ7KIkrW5XQPMOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJzRcVxjrmMAWyUTegDjAF0lEdAppedOEdvKnV9lChoBkdAZnyzOX3QD2gHTegDaAhHQKaZKYpDu0F1fZQoaAZHQGPiuFQEZBNoB03oA2gIR0CmmWg6dUbUdX2UKGgGR0BlsqA8SwnqaAdN6ANoCEdAppl+nhsImnV9lChoBkdARxGVkc0cfmgHTQkBaAhHQKaflyrgflp1fZQoaAZHQFHxv/zasZJoB0vVaAhHQKagakeIVM51fZQoaAZHQEhyevpyIYZoB0veaAhHQKahNh4t6HF1fZQoaAZHQGKSo7V8Ti9oB03oA2gIR0CmojZXEIgOdX2UKGgGR0Bb5Q2/BWPtaAdN6ANoCEdApqREO09hZ3V9lChoBkdAYyL7hNucc2gHTegDaAhHQKambZFocrB1fZQoaAZHQGE5G3F1jiJoB03oA2gIR0CmpoV89fTkdX2UKGgGR0BjM12q1gIAaAdN6ANoCEdApqojoyKvV3V9lChoBkdAZ6WInBtUGWgHTegDaAhHQKaq3Hn2ZiN1fZQoaAZHQGZDjPfKp1loB03oA2gIR0Cmq2rJKaoddX2UKGgGR0BiKrNnoPkJaAdN6ANoCEdApqwPV9Wp63V9lChoBkdAYm2/s3Q2M2gHTegDaAhHQKa7xfShJy11fZQoaAZHQGeRl6iTMaFoB03oA2gIR0Cmvlv+XJHRdX2UKGgGR0BjGoAZKnNxaAdN6ANoCEdApr+mXw9aEHV9lChoBkdAYfOKZ2IO6WgHTegDaAhHQKbCDWPtD2J1fZQoaAZHQF6e2Xsw+MZoB03oA2gIR0CmxI5pSJj2dX2UKGgGR0BjzKMglnh9aAdN6ANoCEdApsycdNnGsHV9lChoBkdAZHNhWHUMHGgHTegDaAhHQKbNPRUm2LJ1fZQoaAZHQGW8CxeLNwBoB03oA2gIR0Cmzc/dqL0jdX2UKGgGR0BhWb3XZoPDaAdN6ANoCEdAps5/BxgiNnV9lChoBkdAZScAYHgP3GgHTegDaAhHQKbQASr5qM51fZQoaAZHQGctmXokiUxoB03oA2gIR0Cm0Zhh6SkkdX2UKGgGR0Bjxu5J9RaYaAdN6ANoCEdAptGo2AG0NXV9lChoBkdARyMW43FUAGgHS9poCEdAptNXWvr4WXV9lChoBkdAYcEBQN0/4mgHTegDaAhHQKbUQDdxhlV1fZQoaAZHQGCU2g3974VoB03oA2gIR0Cm1OaLOzIFdX2UKGgGR0BlUxFPSDywaAdN6ANoCEdAptV9IuoP1HV9lChoBkdAY+KQxN7BwmgHTegDaAhHQKbWJB0p3HJ1fZQoaAZHQF/DU8mrsB1oB03oA2gIR0Cm6f8Pe54GdX2UKGgGR0BkIwllbu+iaAdN6ANoCEdApu3h3cHnlnV9lChoBkdAZKtsXSBsh2gHTegDaAhHQKbu5nnuAqd1fZQoaAZHQGaSASWZ7XxoB03oA2gIR0Cm8LjQqqffdX2UKGgGR0BkDLpX6qKhaAdN6ANoCEdApvKL67/XG3V9lChoBkdARoittALRbGgHS9toCEdApvSFuNxVAHV9lChoBkdATN+oP07KaGgHS+9oCEdApvecu+RHPXV9lChoBkdAYGz1qWTouGgHTegDaAhHQKb4S2nbZe11fZQoaAZHQGhoUXYUWVNoB03oA2gIR0Cm+MYXoC+2dX2UKGgGR0Bloz/6wdKeaAdN6ANoCEdApvlfuqm0mnV9lChoBkdASIBjQRf4RGgHTQcBaAhHQKb5+Py08eV1fZQoaAZHQGDCMCkoF3ZoB03oA2gIR0Cm+qwX668QdX2UKGgGR0AbA7PppvgnaAdL4GgIR0Cm+r93jdYXdX2UKGgGR0BnEUroW56MaAdN6ANoCEdApvveMwUQCnV9lChoBkdAYagZZSvTw2gHTegDaAhHQKb76tYjjaR1fZQoaAZHQGa9bgjyFwloB03oA2gIR0Cm/Spb2USqdX2UKGgGR0BdOh19v0iAaAdN6ANoCEdApv3TImw7knV9lChoBkdAYTpvxYq5LGgHTegDaAhHQKb+V0IToMd1fZQoaAZHQGOGgmJFb3ZoB03oA2gIR0Cm/s9adMCcdX2UKGgGR0Bj+EJ0GNaRaAdN6ANoCEdApv9ZjWkJr3V9lChoBkfACtr1M/QjU2gHS/FoCEdApxDXOjZcs3V9lChoBkdAYdli3G4qgGgHTegDaAhHQKcTNOHnEEV1fZQoaAZHQF/2r5IpYtBoB03oA2gIR0CnFvUMPSUkdX2UKGgGR0BlQq+N96ToaAdN6ANoCEdApyFK3PRiPXV9lChoBkdAYtAxj8UEgWgHTegDaAhHQKciHacI7eV1fZQoaAZHQGDiSrPt2LZoB03oA2gIR0CnItawMYuTdX2UKGgGR0BikN8qnWJ8aAdN6ANoCEdApyO92JSBLHV9lChoBkdAYIcO09hZyWgHTegDaAhHQKckjVOsT391fZQoaAZHQGQIA1WKdhBoB03oA2gIR0CnJYQGOdXldX2UKGgGR0BmSV/YraufaAdN6ANoCEdApyWl8eCCjHV9lChoBkdAYstIV/MGHGgHTegDaAhHQKcnFFYMfA91fZQoaAZHQGeqPq9oN/hoB03oA2gIR0CnJyYtpVS5dX2UKGgGR0Be9MsUZeiSaAdN6ANoCEdApyjXEVFhHHV9lChoBkdAXf36XSjQA2gHTegDaAhHQKcpx/rjYI11fZQoaAZHQGESO0kWykdoB03oA2gIR0CnKzvP1L8KdX2UKGgGR0BlakYdhiLEaAdN6ANoCEdApywcofCAMHV9lChoBkdAXh5X0XgtOGgHTegDaAhHQKc9shi9Zid1fZQoaAZHQGE0QDmr8zhoB03oA2gIR0CnQBQGwA2idX2UKGgGR0Bng+HUMG5daAdN6ANoCEdAp0QakAPuonV9lChoBkdAYL+Rs/IKdGgHTegDaAhHQKdR1bGm1pl1fZQoaAZHQGLF00vXbudoB03oA2gIR0CnUp5ylvZRdX2UKGgGR0Bl4CKJl8PXaAdN6ANoCEdAp1MtpCa7VnV9lChoBkdAY6zkKeCkGmgHTegDaAhHQKdT1d7fHgh1fZQoaAZHQGLjMWfseGRoB03oA2gIR0CnVHh3qzJIdX2UKGgGR0BnLsYuTRplaAdN6ANoCEdAp1U+LpA2RHV9lChoBkdAZnwRTS9dvGgHTegDaAhHQKdVU93bEgp1fZQoaAZHQFySymALApNoB03oA2gIR0CnVoEvK2a2dX2UKGgGR0BllnLvCuU2aAdN6ANoCEdAp1aOPvKEFnV9lChoBkdAYxUJuVHFxWgHTegDaAhHQKdX+ouwost1fZQoaAZHQGS2ZoXbdrRoB03oA2gIR0CnWKxxT850dX2UKGgGR0BlaCNZNfw7aAdN6ANoCEdAp1mrLZBcA3V9lChoBkdAY6kzUI9kjGgHTegDaAhHQKdaN1wHZ9N1fZQoaAZHQGOViGFi8WdoB03oA2gIR0CnbE2cz67/dX2UKGgGR0BfzL+YMOPOaAdN6ANoCEdAp2+D6nBLwnV9lChoBkdAY66teUpuuWgHTegDaAhHQKd0VI1+AmR1fZQoaAZHQGVcGGEf1YhoB03oA2gIR0Cnfpj+BH09dX2UKGgGR0Bj9JsImgJ1aAdN6ANoCEdAp39pf6XSjXV9lChoBkdAYvV3FDOTq2gHTegDaAhHQKd//FTefqZ1fZQoaAZHQF+GCV8kUsZoB03oA2gIR0CngKRnezlcdX2UKGgGR0Be7ACGN70GaAdN6ANoCEdAp4FI1pCa7XV9lChoBkdAYSKbDuSfUWgHTegDaAhHQKeCDGQ0XP91fZQoaAZHQF7MHJtBOYZoB03oA2gIR0CngiBdD6WPdX2UKGgGR0Bi8IIIF/x2aAdN6ANoCEdAp4MrAi3XqnV9lChoBkdAZbkHrQgLZ2gHTegDaAhHQKeDN0OEug91fZQoaAZHQF0A7XxvvSdoB03oA2gIR0CnhIrwF1SwdX2UKGgGR0BjQuzOX3QEaAdN6ANoCEdAp4U6Kcd5p3V9lChoBkdAXfMA3kxREWgHTegDaAhHQKeGQT9sJpp1fZQoaAZHQGKoANwzch1oB03oA2gIR0CnhtnNX5nEdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d5e29e5fa79be8e1469650e00f85738f18c8a491a740c69b25a122cd41d039
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eb91903943bb6d22e5a9727a7d0363bc338ccbf1600f697fe678764cdfb3133
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.38379779999997, "std_reward": 16.870070485526885, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-27T05:50:31.197063"}