jerome
commited on
Commit
·
a0446c6
1
Parent(s):
c671ac3
initial commit
Browse files- README.md +1 -0
- flava_finetuning_tutorial.ipynb +325 -0
README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
FLAVA fine-tuning
|
flava_finetuning_tutorial.ipynb
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"id": "oUL6DV1zCIlB"
|
| 8 |
+
},
|
| 9 |
+
"outputs": [],
|
| 10 |
+
"source": [
|
| 11 |
+
"%matplotlib inline\n",
|
| 12 |
+
"!nvidia-smi"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "markdown",
|
| 17 |
+
"metadata": {
|
| 18 |
+
"id": "WmJySTGXCIlD"
|
| 19 |
+
},
|
| 20 |
+
"source": [
|
| 21 |
+
"\n",
|
| 22 |
+
"# TorchMultimodal Tutorial: Finetuning FLAVA\n"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "markdown",
|
| 27 |
+
"metadata": {
|
| 28 |
+
"id": "ZJCb2uRyCIlE"
|
| 29 |
+
},
|
| 30 |
+
"source": [
|
| 31 |
+
"Multimodal AI has recently become very popular owing to its ubiquitous\n",
|
| 32 |
+
"nature, from use cases like image captioning and visual search to more\n",
|
| 33 |
+
"recent applications like image generation from text. **TorchMultimodal\n",
|
| 34 |
+
"is a library powered by Pytorch consisting of building blocks and end to\n",
|
| 35 |
+
"end examples, aiming to enable and accelerate research in\n",
|
| 36 |
+
"multimodality**.\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"In this tutorial, we will demonstrate how to use a **pretrained SoTA\n",
|
| 39 |
+
"model called** [FLAVA](https://arxiv.org/pdf/2112.04482.pdf)_ **from\n",
|
| 40 |
+
"TorchMultimodal library to finetune on a multimodal task i.e. visual\n",
|
| 41 |
+
"question answering** (VQA). The model consists of two unimodal transformer\n",
|
| 42 |
+
"based encoders for text and image and a multimodal encoder to combine\n",
|
| 43 |
+
"the two embeddings. It is pretrained using contrastive, image text matching and \n",
|
| 44 |
+
"text, image and multimodal masking losses.\n",
|
| 45 |
+
"\n"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "markdown",
|
| 50 |
+
"metadata": {
|
| 51 |
+
"id": "0TjU3iQgCIlE"
|
| 52 |
+
},
|
| 53 |
+
"source": [
|
| 54 |
+
"## Installation\n",
|
| 55 |
+
"We will use TextVQA dataset and bert tokenizer from HuggingFace for this\n",
|
| 56 |
+
"tutorial. So you need to install datasets and transformers in addition to TorchMultimodal.\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"<div class=\"alert alert-info\"><h4>Note</h4><p>When running this tutorial in Google Colab, install the required packages by\n",
|
| 59 |
+
" creating a new cell and running the following commands:\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"```\n",
|
| 62 |
+
"!pip install torchmultimodal-nightly\n",
|
| 63 |
+
"!pip install datasets\n",
|
| 64 |
+
"!pip install transformers</p></div>\n",
|
| 65 |
+
"```\n"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "markdown",
|
| 70 |
+
"metadata": {
|
| 71 |
+
"id": "LGuYfyaJCIlE"
|
| 72 |
+
},
|
| 73 |
+
"source": [
|
| 74 |
+
"## Steps \n",
|
| 75 |
+
"\n",
|
| 76 |
+
"1. Download the HuggingFace dataset to a directory on your computer by running the following command:\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"```\n",
|
| 79 |
+
"wget http://dl.fbaipublicfiles.com/pythia/data/vocab.tar.gz \n",
|
| 80 |
+
"tar xf vocab.tar.gz\n",
|
| 81 |
+
"```\n",
|
| 82 |
+
" .. note:: \n",
|
| 83 |
+
" If you are running this tutorial in Google Colab, run these commands\n",
|
| 84 |
+
" in a new cell and prepend these commands with an exclamation mark (!)\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"2. For this tutorial, we treat VQA as a classification task where\n",
|
| 88 |
+
" the inputs are images and question (text) and the output is an answer class. \n",
|
| 89 |
+
" So we need to download the vocab file with answer classes and create the answer to\n",
|
| 90 |
+
" label mapping.\n",
|
| 91 |
+
"\n",
|
| 92 |
+
" We also load the [textvqa\n",
|
| 93 |
+
" dataset](https://arxiv.org/pdf/1904.08920.pdf)_ containing 34602 training samples\n",
|
| 94 |
+
" (images,questions and answers) from HuggingFace\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"We see there are 3997 answer classes including a class representing\n",
|
| 97 |
+
"unknown answers.\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"\n"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": null,
|
| 105 |
+
"metadata": {
|
| 106 |
+
"id": "b6c1oq0lCIlF"
|
| 107 |
+
},
|
| 108 |
+
"outputs": [],
|
| 109 |
+
"source": [
|
| 110 |
+
"with open(\"data/vocabs/answers_textvqa_more_than_1.txt\") as f:\n",
|
| 111 |
+
" vocab = f.readlines()\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"answer_to_idx = {}\n",
|
| 114 |
+
"for idx, entry in enumerate(vocab):\n",
|
| 115 |
+
" answer_to_idx[entry.strip(\"\\n\")] = idx\n",
|
| 116 |
+
"print(len(vocab))\n",
|
| 117 |
+
"print(vocab[:5])\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"from datasets import load_dataset\n",
|
| 120 |
+
"dataset = load_dataset(\"textvqa\")"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "markdown",
|
| 125 |
+
"metadata": {
|
| 126 |
+
"id": "kGCla9GgCIlF"
|
| 127 |
+
},
|
| 128 |
+
"source": [
|
| 129 |
+
"Lets display a sample entry from the dataset:\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"\n"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "code",
|
| 136 |
+
"execution_count": null,
|
| 137 |
+
"metadata": {
|
| 138 |
+
"id": "GLS8HGYtCIlF"
|
| 139 |
+
},
|
| 140 |
+
"outputs": [],
|
| 141 |
+
"source": [
|
| 142 |
+
"import matplotlib.pyplot as plt\n",
|
| 143 |
+
"import numpy as np \n",
|
| 144 |
+
"idx = 5 \n",
|
| 145 |
+
"print(\"Question: \", dataset[\"train\"][idx][\"question\"]) \n",
|
| 146 |
+
"print(\"Answers: \" ,dataset[\"train\"][idx][\"answers\"])\n",
|
| 147 |
+
"im = np.asarray(dataset[\"train\"][idx][\"image\"].resize((500,500)))\n",
|
| 148 |
+
"plt.imshow(im)\n",
|
| 149 |
+
"plt.show()"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "markdown",
|
| 154 |
+
"metadata": {
|
| 155 |
+
"id": "J1UO_daoCIlG"
|
| 156 |
+
},
|
| 157 |
+
"source": [
|
| 158 |
+
"3. Next, we write the transform function to convert the image and text into\n",
|
| 159 |
+
"Tensors consumable by our model - For images, we use the transforms from\n",
|
| 160 |
+
"torchvision to convert to Tensor and resize to uniform sizes - For text,\n",
|
| 161 |
+
"we tokenize (and pad) them using the BertTokenizer from HuggingFace -\n",
|
| 162 |
+
"For answers (i.e. labels), we take the most frequently occuring answer\n",
|
| 163 |
+
"as the label to train with:\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"\n"
|
| 166 |
+
]
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"cell_type": "code",
|
| 170 |
+
"execution_count": null,
|
| 171 |
+
"metadata": {
|
| 172 |
+
"id": "rO7lCn4DCIlG"
|
| 173 |
+
},
|
| 174 |
+
"outputs": [],
|
| 175 |
+
"source": [
|
| 176 |
+
"import torch\n",
|
| 177 |
+
"from torchvision import transforms\n",
|
| 178 |
+
"from collections import defaultdict\n",
|
| 179 |
+
"from transformers import BertTokenizer\n",
|
| 180 |
+
"from functools import partial\n",
|
| 181 |
+
"\n",
|
| 182 |
+
"def transform(tokenizer, input):\n",
|
| 183 |
+
" batch = {}\n",
|
| 184 |
+
" image_transform = transforms.Compose([transforms.ToTensor(), transforms.Resize([224,224])])\n",
|
| 185 |
+
" image = image_transform(input[\"image\"][0].convert(\"RGB\"))\n",
|
| 186 |
+
" batch[\"image\"] = [image]\n",
|
| 187 |
+
"\n",
|
| 188 |
+
" tokenized=tokenizer(input[\"question\"],return_tensors='pt',padding=\"max_length\",max_length=512)\n",
|
| 189 |
+
" batch.update(tokenized)\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"\n",
|
| 192 |
+
" ans_to_count = defaultdict(int)\n",
|
| 193 |
+
" for ans in input[\"answers\"][0]:\n",
|
| 194 |
+
" ans_to_count[ans] += 1\n",
|
| 195 |
+
" max_value = max(ans_to_count, key=ans_to_count.get)\n",
|
| 196 |
+
" ans_idx = answer_to_idx.get(max_value,0)\n",
|
| 197 |
+
" batch[\"answers\"] = torch.as_tensor([ans_idx])\n",
|
| 198 |
+
" return batch\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"tokenizer=BertTokenizer.from_pretrained(\"bert-base-uncased\",padding=\"max_length\",max_length=512)\n",
|
| 201 |
+
"transform=partial(transform,tokenizer)\n",
|
| 202 |
+
"dataset.set_transform(transform)"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "markdown",
|
| 207 |
+
"metadata": {
|
| 208 |
+
"id": "LOMy3UbpCIlG"
|
| 209 |
+
},
|
| 210 |
+
"source": [
|
| 211 |
+
"4. Finally, we import the flava_model_for_classification from\n",
|
| 212 |
+
"torchmultimodal. It loads the pretrained flava checkpoint by default and\n",
|
| 213 |
+
"includes a classification head.\n",
|
| 214 |
+
"\n",
|
| 215 |
+
"The model forward function passes the image through the visual encoder\n",
|
| 216 |
+
"and the question through the text encoder. The image and question\n",
|
| 217 |
+
"embeddings are then passed through the multimodal encoder. The final\n",
|
| 218 |
+
"embedding corresponding to the CLS token is passed through a MLP head\n",
|
| 219 |
+
"which finally gives the probability distribution over each possible\n",
|
| 220 |
+
"answers.\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"\n"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": null,
|
| 228 |
+
"metadata": {
|
| 229 |
+
"id": "drSfcYNCCIlG"
|
| 230 |
+
},
|
| 231 |
+
"outputs": [],
|
| 232 |
+
"source": [
|
| 233 |
+
"from torchmultimodal.models.flava.model import flava_model_for_classification\n",
|
| 234 |
+
"model = flava_model_for_classification(num_classes=len(vocab))"
|
| 235 |
+
]
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"cell_type": "markdown",
|
| 239 |
+
"metadata": {
|
| 240 |
+
"id": "976mlWvaCIlG"
|
| 241 |
+
},
|
| 242 |
+
"source": [
|
| 243 |
+
"5. We put together the dataset and model in a toy training loop to\n",
|
| 244 |
+
"demonstrate how to train the model for 3 iterations:\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"\n"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "code",
|
| 251 |
+
"execution_count": null,
|
| 252 |
+
"metadata": {
|
| 253 |
+
"id": "0KvxQ4xaCIlH"
|
| 254 |
+
},
|
| 255 |
+
"outputs": [],
|
| 256 |
+
"source": [
|
| 257 |
+
"from torch import nn\n",
|
| 258 |
+
"BATCH_SIZE = 2\n",
|
| 259 |
+
"MAX_STEPS = 3\n",
|
| 260 |
+
"from torch.utils.data import DataLoader\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"train_dataloader = DataLoader(dataset[\"train\"], batch_size= BATCH_SIZE)\n",
|
| 263 |
+
"optimizer = torch.optim.AdamW(model.parameters())\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"\n",
|
| 266 |
+
"epochs = 1\n",
|
| 267 |
+
"for _ in range(epochs):\n",
|
| 268 |
+
" for idx, batch in enumerate(train_dataloader):\n",
|
| 269 |
+
" optimizer.zero_grad()\n",
|
| 270 |
+
" out = model(text = batch[\"input_ids\"], image = batch[\"image\"], labels = batch[\"answers\"])\n",
|
| 271 |
+
" loss = out.loss\n",
|
| 272 |
+
" loss.backward()\n",
|
| 273 |
+
" optimizer.step()\n",
|
| 274 |
+
" print(f\"Loss at step {idx} = {loss}\")\n",
|
| 275 |
+
" if idx > MAX_STEPS-1:\n",
|
| 276 |
+
" break"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "markdown",
|
| 281 |
+
"metadata": {
|
| 282 |
+
"id": "A7An1sjZCIlH"
|
| 283 |
+
},
|
| 284 |
+
"source": [
|
| 285 |
+
"## Conclusion\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"This tutorial introduced the basics around how to finetune on a\n",
|
| 288 |
+
"multimodal task using FLAVA from TorchMultimodal. Please also check out\n",
|
| 289 |
+
"other examples from the library like\n",
|
| 290 |
+
"[MDETR](https://github.com/facebookresearch/multimodal/tree/main/torchmultimodal/models/mdetr)_\n",
|
| 291 |
+
"which is a multimodal model for object detection and\n",
|
| 292 |
+
"[Omnivore](https://github.com/facebookresearch/multimodal/blob/main/torchmultimodal/models/omnivore.py)_\n",
|
| 293 |
+
"which is multitask model spanning image, video and 3d classification.\n",
|
| 294 |
+
"\n",
|
| 295 |
+
"\n"
|
| 296 |
+
]
|
| 297 |
+
}
|
| 298 |
+
],
|
| 299 |
+
"metadata": {
|
| 300 |
+
"kernelspec": {
|
| 301 |
+
"display_name": "Python 3",
|
| 302 |
+
"language": "python",
|
| 303 |
+
"name": "python3"
|
| 304 |
+
},
|
| 305 |
+
"language_info": {
|
| 306 |
+
"codemirror_mode": {
|
| 307 |
+
"name": "ipython",
|
| 308 |
+
"version": 3
|
| 309 |
+
},
|
| 310 |
+
"file_extension": ".py",
|
| 311 |
+
"mimetype": "text/x-python",
|
| 312 |
+
"name": "python",
|
| 313 |
+
"nbconvert_exporter": "python",
|
| 314 |
+
"pygments_lexer": "ipython3",
|
| 315 |
+
"version": "3.10.9"
|
| 316 |
+
},
|
| 317 |
+
"colab": {
|
| 318 |
+
"provenance": []
|
| 319 |
+
},
|
| 320 |
+
"accelerator": "GPU",
|
| 321 |
+
"gpuClass": "standard"
|
| 322 |
+
},
|
| 323 |
+
"nbformat": 4,
|
| 324 |
+
"nbformat_minor": 0
|
| 325 |
+
}
|